Cho hình phẳng được gạch chéo trong hình bên dưới.
Các mệnh đề sau đây đúng hay sai
A. Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Cho hình phẳng được gạch chéo trong hình bên dưới.

Các mệnh đề sau đây đúng hay sai
A. Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Quảng cáo
Trả lời:

A-Đúng
Diện tích hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Ta có \[S = \int\limits_1^2 {{x^2}dx = \frac{7}{3}.} \]
Câu hỏi cùng đoạn
Câu 2:
B. Diện tích hình phẳng gạch chéo trong hình vẽ là \[\int\limits_1^2 {{x^2}dx} \].
B. Diện tích hình phẳng gạch chéo trong hình vẽ là \[\int\limits_1^2 {{x^2}dx} \].
Lời giải của GV VietJack
B-Đúng
Diện tích hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Ta có \[S = \int\limits_1^2 {{x^2}dx = \frac{7}{3}.} \]
Câu 3:
C. Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
C. Diện tích hình phẳng gạch chéo trong hình vẽ bằng \(\frac{4}{3}\).
Lời giải của GV VietJack
C-Sai
Diện tích hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Ta có \[S = \int\limits_1^2 {{x^2}dx = \frac{7}{3}.} \]
Câu 4:
D. Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 0;x = 2\].
D. Hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 0;x = 2\].
Lời giải của GV VietJack
D-Sai
Diện tích hình phẳng được gạch chéo trong hình trên được giới hạn các đồ thị \[y = {x^2};y = 0;x = 1;x = 2\].
Ta có \[S = \int\limits_1^2 {{x^2}dx = \frac{7}{3}.} \]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng vì đường thẳng \[d:\,y = ax + b\]. \[d\] đi qua hai điểm \(\left( {1;3} \right)\) và \(\left( {6;8} \right)\) nên \[\left\{ \begin{array}{l}a + b = 3\\6a + b = 8\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\end{array} \right.\]\( \Rightarrow d:y = x + 2\).
Lời giải
A-Đúng
A. đồ thị hàm số \[y = f\left( t \right)\] trên đoạn \[\left[ {0;1} \right]\] là \[y = \frac{1}{2}t\]. Do đó diện tích hình phẳng được giới hạn các đồ thị hàm số \[y = f\left( t \right)\], trục \[Ot\] và hai đường thẳng là: \[t = 0;t = 1\] là \[S = \frac{1}{2}\int\limits_0^1 {tdt} = \frac{1}{4}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.