Câu hỏi:

01/08/2025 3 Lưu

Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố "Xuất hiện hai mặt có cùng số chấm", B là biến cố "Tổng số chấm của hai mặt xuất hiện bằng 8 " và C là biến cố "Xuất hiện ít nhất một mặt có 6 chấm". Tính \(\frac{{P(A \cap B)}}{{P(B)}}\) và \({\rm{P}}({\rm{A}}\mid {\rm{B}})\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có không gian mẫu của phép thử là

\(\Omega  = \{ ({\rm{i}};{\rm{j}}):1 \le {\rm{i}} \le 6,1 \le {\rm{j}} \le 6\} \) trong đó (i; j ) là số chấm xuất hiện lần lượt ở hai con xúc xắc. Suy ra \(n(\Omega ) = 36\).

\({\rm{A}} \cap {\rm{B}}\) là biến cố "Xuất hiện hai mặt có cùng số chấm và tổng bằng 8 ".

Tập hợp các kết quả thuận lợi cho biến cố \(A \cap B\) là \(\{ (4;4)\} \). Suy ra \(n(A \cap B) = 1\).

Do đó \(P(A \cap B) = \frac{1}{{36}}\).

B là biến cố "Tổng số chấm của hai mặt xuất hiện bằng 8".

Tập hợp các kết quả thuận lợi cho biến cố B là \(\{ (2;6),(3;5),(4;4),(5;3),(6;2)\} \). Suy ra \(n(B) = 5\).

Do đó \(P(B) = \frac{5}{{36}}\). Vậy \(\frac{{P(A \cap B)}}{{P(B)}} = \frac{1}{5}\).

Trong số 5 kết quả thuận lợi cho biến cố B thì có 1 kết quả thuận lợi cho biến A.

Do đó \(P(A\mid B) = \frac{1}{5}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi A là biến cố "Xuất hiện mặt chẵn chấm", B là biến cố "Xuất hiện mặt 6 chấm".

Tập hợp các kết quả thuận lợi cho biến cố A là \(\{ 2;4;6\} \).

Tập hợp các kết quả thuận lợi cho biến cố B là \(\{ 6\} \).

Do đó \(P(B\mid A) = \frac{1}{3}\).

Lời giải

Ta có \({\rm{P}}(\bar B\mid {\rm{A}}) = \frac{{P(B \cap A)}}{{P(A)}} = \frac{{P(A \cap \bar B)}}{{P(A)}} = \frac{{0,2}}{{0,6}} = \frac{1}{3}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP