Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố "Xuất hiện hai mặt có cùng số chấm", B là biến cố "Tổng số chấm của hai mặt xuất hiện bằng 8 " và C là biến cố "Xuất hiện ít nhất một mặt có 6 chấm". Tính \(\frac{{P(C \cap A)}}{{P(A)}}\) và \({\rm{P}}({\rm{C}}\mid {\rm{A}})\).
Quảng cáo
Trả lời:
Ta có không gian mẫu của phép thử là
\(\Omega = \{ ({\rm{i}};{\rm{j}}):1 \le {\rm{i}} \le 6,1 \le {\rm{j}} \le 6\} \) trong đó (i; j ) là số chấm xuất hiện lần lượt ở hai con xúc xắc. Suy ra \(n(\Omega ) = 36\).
\({\rm{C}} \cap {\rm{A}}\) là biến cố "Xuất hiện hai mặt có cùng số chấm trong đó có ít nhất một mặt 6 chấm".
Tập hợp các kết quả thuận lợi cho biến cố \(C \cap A\) là \(\{ (6;6)\} \). Suy ra \(n(C \cap A) = 1\).
Do đó \(P(C \cap A) = \frac{1}{{36}}\).
A là biến cố "Xuất hiện hai mặt có cùng số chấm".
Tập hợp các kết quả thuận lợi cho biến cố A là \(\{ (1;1),(2;2),(3;3),(4;4),(5;5)\), \((6;6)\} \).
Suy ra \(n(A) = 6\). Do đó \(P(A) = \frac{6}{{36}} = \frac{1}{6}\). Vậy \(\frac{{P(C \cap A)}}{{P(A)}} = \frac{1}{6}\).
Trong số 6 kết quả thuận lợi cho biến cố A thì có 1 kết quả thuận lợi cho biến cố C.
Do đó \(P(C\mid A) = \frac{1}{6}\).
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Theo công thức nhân xác suất, ta có \(P(AB) = P(B)P(A\mid B) = 0,2\).
Vì \(\bar AB\) và \(AB\) là hai biến cố xung khắc và \(\bar AB \cup AB = B\) nên theo tính chất của xác suất, ta có \(P(\bar AB) = P(B) - P(AB) = 0,3\).
Theo công thức tính xác suất có điều kiện, \(P(\bar A\mid B) = \frac{{P(\bar AB)}}{{P(B)}} = \frac{{0,3}}{{0,5}} = 0,6.\)
Lời giải
Gọi \(A\) là biến cố "Thành viên được chọn biết chơi cờ tướng" và \(B\) là biến cố "Thành viên được chọn biết chơi cờ vua".
Số thành viên của câu lạc bộ biết chơi cả hai môn cờ là \(20 + 25 - 35 = 10\).
Do đó, trong số 20 thành viên biết chơi cờ tướng, có đúng 10 thành viên biết chơi cờ vua.
Vậy nên xác suất thành viên được chọn biết chơi cờ vua, biết rằng thành viên đó biết chơi cờ tướng là \(P(B\mid A) = \frac{{10}}{{20}} = 0,5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.