Câu hỏi:

19/08/2025 31 Lưu

Một nhóm 5 học sinh nam và 4 học sinh nữ tham gia lao động trên sân trường. Cô giáo chọn ngẫu nhiên đồng thời 2 bạn trong nhóm đi tưới cây. Tính xác suất để hai bạn được chọn có cùng giới tính, biết rằng có ít nhất 1 bạn nam được chọn.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi A là biến cố "Chọn hai bạn có cùng giới tính".

B là biến cố "Chọn được ít nhất 1 bạn nam".

AB là biến cố "Chọn được hai bạn có cùng giới tính trong đó có ít nhất 1 bạn nam" hay AB "Chọn được 2 bạn nam".

Ta có \(P(AB) = \frac{{C_5^2}}{{C_9^2}} = \frac{5}{{18}}\). \(P(B) = \frac{{C_5^1 \cdot C_4^1}}{{C_9^2}} + \frac{{C_5^2}}{{C_9^2}} = \frac{5}{9} + \frac{5}{{18}} = \frac{5}{6}{\rm{. }}\)

Do đó \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{5}{{18}}:\frac{5}{6} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính \(P(D\mid A)\).

Ta thấy khi biến cố \(A\) xảy ra thì kết quả của phép thử là \((1;2)\) hoặc \((1;3)\). Đây đều là các kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid A) = 1\).

Tính \(P(D\mid B)\)

Ta thấy khi biến cố \(B\) xảy ra thì kết quả của phép thử là \((2;1)\) hoặc \((2;3)\). Trong hai kết quả này thì có một kết quả thuận lợi cho biến cố \(D\). Do đó \(P(D\mid B) = \frac{1}{2}\)