Cho hai biến cố \(A\) và \(B\) có \(P(A) = 0,4;P(B) = 0,8\) và \(P(A\mid \bar B) = 0,5\). Tính \(P(A\bar B)\) và \(P(A\mid B)\).
Cho hai biến cố \(A\) và \(B\) có \(P(A) = 0,4;P(B) = 0,8\) và \(P(A\mid \bar B) = 0,5\). Tính \(P(A\bar B)\) và \(P(A\mid B)\).
Quảng cáo
Trả lời:

\({\rm{ C\'o }}P(\bar B) = 1 - P(B) = 0,2.{\rm{ }}\)
Theo công thức nhân xác suất ta có: \(P(A\bar B) = P(\bar B) \cdot P(A\mid \bar B) = 0,2 \cdot 0,5 = 0,1.\)
vi \(A\bar B\) và AB là hai biến cố xung khắc và \(A\bar B \cup AB = A\).
Suy ra \(P(AB) = P(A) - P(A\bar B) = 0,4 - 0,1 = 0,3\). Do đó \(P(A\mid B) = \frac{{P(AB)}}{{P(B)}} = \frac{{0,3}}{{0,8}} = \frac{3}{8}\)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Nếu Sơn lấy được bút bi đen thì trong 11 chiếc bút còn lại có 7 bút bi xanh và 4 bút bi đen. Vậy xác suất để Tùng lấy được bút bi xanh khi biết Sơn lấy được bút bi đen là \(\frac{7}{{11}}\).
Lời giải
Gọi \(A\) là biến cố "Người mua bảo hiểm ô tô là phụ nữ", \(B\) là biến cố "Người mua bảo hiểm ô tô trên 45 tuổi". Ta cần tính \(P(B\mid A)\).
Do có \(48\% \) người mua bảo hiểm ô tô là phụ nữ nên \(P(A) = 0,48\).
Do có \(36\% \) số người mua bảo hiểm ô tô là phụ nữ trên 45 tuổi nên \(P(AB) = 0,36\).
Vậy \(P(B\mid A) = \frac{{P(AB)}}{{P(A)}} = \frac{{0,36}}{{0,48}} = 0,75\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.