Câu hỏi:

02/08/2025 4 Lưu

Cho tứ diện \(ABCD\) với \(A\left( {2;1;0} \right),B\left( {1;1;3} \right),C\left( {2; - 1;3} \right),D\left( {1; - 1;0} \right)\).

d) Bán kính của mặt cầu ngoại tiếp tứ diện \(ABCD\) bằng \(\frac{{\sqrt {14} }}{2}\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

d) Đúng: Theo kết quả câu 3. Lấy \[G\] là trung điểm của \(IJ\) ta được:

\(GA = GB\) vì \(\Delta GAB\) cân đỉnh \(G\);\(GC = GD\) vì \(\Delta GCD\) cân đỉnh \(G\)

Mà \(GA = \sqrt {G{I^2} + I{A^2}} \) mà \(GI = GJ,IA = ID\) và \(GC = \sqrt {G{J^2} + I{D^2}} \)

Do đó \(GA = GB = GC = GD = R\)

Do đó \[G\]: Tâm mặt cầu ngoại tuyến khối tứ diện \(ABCD:G\left( {\frac{3}{2};0;\frac{3}{2}} \right)\) và bán kính của mặt cầu là \(R = GA = \frac{{\sqrt {14} }}{2}\) (\[G\]: cũng chính là trọng tâm của khối tứ diện gần đều \(ABCD\))

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai: M là trung điểm của AB, suy ra MxA+xB2;yA+yB2;zA+zB2 hay M2;3;2.

Lời giải

Media VietJack

a) Đúng: Theo qui tắc hình bình hành, ta có \(\overrightarrow {AD}  = \overrightarrow {AC}  - \overrightarrow {AB}  = \left( {0;2;0} \right) \Rightarrow D\left( {0;2;0} \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP