Cho hàm số \(f(x) = {x^2} - 2x\). Trong các hàm số cho dưới đây, hàm số nào là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) ? \(F(x) = \frac{{{x^3}}}{3} - {x^2}\);
Cho hàm số \(f(x) = {x^2} - 2x\). Trong các hàm số cho dưới đây, hàm số nào là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) ? \(F(x) = \frac{{{x^3}}}{3} - {x^2}\);
Quảng cáo
Trả lời:

Ta có: \({F^\prime }(x) = {x^2} - 2x,{G^\prime }(x) = {x^2} + 2x\).
Vì \({F^\prime }(x) = f(x)\) với mọi \(x \in \mathbb{R}\) nên hàm số \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hàm số \(G(x)\) không là nguyên hàm của \(f(x)\) trên \(\mathbb{R}\) vì với \(x = 1\), ta có
\({G^\prime }(1) = 3 \ne - 1 = f(1){\rm{. }}\)Lời giải
\({F^\prime }(x) = \ln x + x{(\ln x)^\prime } = \ln x + 1 = f(x)\) với mọi \(x \in (0; + \infty )\) nên hàm số \(F(x) = x\ln x\) là một nguyên hàm của hàm số \(f(x) = 1 + \ln x\) trên khoảng \((0; + \infty )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.