Câu hỏi:

06/08/2025 92 Lưu

Cho hàm số \(f(x) = {x^2} - 2x\). Trong các hàm số cho dưới đây, hàm số nào là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\) ? \(F(x) = \frac{{{x^3}}}{3} - {x^2}\);          

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \({F^\prime }(x) = {x^2} - 2x,{G^\prime }(x) = {x^2} + 2x\).

Vì \({F^\prime }(x) = f(x)\) với mọi \(x \in \mathbb{R}\) nên hàm số \(F(x)\) là một nguyên hàm của \(f(x)\) trên \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \({F^\prime }(x) = {\left( {5x + {x^2}} \right)^\prime } = 5 + 2x = f(x)\) với mọi \(x\) thuộc \(\mathbb{R}\).
Vậy \(F(x)\) là một nguyên hàm của hàm số \(f(x)\) trên \(\mathbb{R}\).

Lời giải

Ta có \({G^\prime }(x) = {(\tan x)^\prime } = \frac{1}{{{{\cos }^2}x}} = g(x)\) với mọi \(x\) thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Vậy \(G(x)\) là một nguyên hàm của hàm số \(g(x)\) trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP