Chứng minh rằng: \(F(x) = 5x + {x^2}\) là một nguyên hàm của hàm số \(f(x) = 5 + 2x\) trên \(\mathbb{R}\).
Chứng minh rằng: \(F(x) = 5x + {x^2}\) là một nguyên hàm của hàm số \(f(x) = 5 + 2x\) trên \(\mathbb{R}\).
Quảng cáo
Trả lời:

Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \({G^\prime }(x) = {(\tan x)^\prime } = \frac{1}{{{{\cos }^2}x}} = g(x)\) với mọi \(x\) thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Vậy \(G(x)\) là một nguyên hàm của hàm số \(g(x)\) trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Lời giải
\({F^\prime }(x) = \ln x + x{(\ln x)^\prime } = \ln x + 1 = f(x)\) với mọi \(x \in (0; + \infty )\) nên hàm số \(F(x) = x\ln x\) là một nguyên hàm của hàm số \(f(x) = 1 + \ln x\) trên khoảng \((0; + \infty )\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.