Tính đạo hàm của hàm số \(F(x) = x{e^x}\), suy ra nguyên hàm của hàm số \(f(x) = (x + 1){e^x}\).
Tính đạo hàm của hàm số \(F(x) = x{e^x}\), suy ra nguyên hàm của hàm số \(f(x) = (x + 1){e^x}\).
Quảng cáo
Trả lời:

\({F^\prime }(x) = {e^x} + x{e^x} = (x + 1){e^x}\) nên \(F(x)\) là một nguyên hàm của \(f(x) = (x + 1){e^x}\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Ta có \({G^\prime }(x) = {(\tan x)^\prime } = \frac{1}{{{{\cos }^2}x}} = g(x)\) với mọi \(x\) thuộc \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Vậy \(G(x)\) là một nguyên hàm của hàm số \(g(x)\) trên \(\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.