Câu hỏi:

05/08/2025 37 Lưu

Cho tam giác \(ABC\) vuông tại \(A\) có \(AB = a,BC = 2a\).

a) \(\widehat {ACB} = 60^\circ \).

b) \(\overrightarrow {BA}  \cdot \overrightarrow {BC}  = {a^2}\).

c) \(\overrightarrow {BC}  \cdot \overrightarrow {CA}  = 3{a^2}.\)

d) \(\overrightarrow {AB}  \cdot \overrightarrow {BC}  + \overrightarrow {BC}  \cdot \overrightarrow {CA}  + \overrightarrow {CA}  \cdot \overrightarrow {AB}  =  - 4{a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Sai. Xét tam giác vuông \(ABC\) có: \(AC = \sqrt {B{C^2} - A{B^2}}  = \sqrt {{{\left( {2a} \right)}^2} - {a^2}}  = a\sqrt 3 \),

\(\cos \widehat {ABC} = \frac{{AB}}{{BC}} = \frac{a}{{2a}} = \frac{1}{2}\) \( \Rightarrow \widehat {ABC} = 60^\circ  \Rightarrow \widehat {ACB} = 30^\circ \).

b) Đúng. Ta có \(\overrightarrow {BA}  \cdot \overrightarrow {BC}  = \left| {\overrightarrow {BA} } \right| \cdot \left| {\overrightarrow {BC} } \right| \cdot \cos \left( {\overrightarrow {BA} ,\overrightarrow {BC} } \right) = BA \cdot BC \cdot \cos \widehat {ABC} = a \cdot 2a \cdot \frac{1}{2} = {a^2}\).

c) Sai. Ta có \(\overrightarrow {BC}  \cdot \overrightarrow {CA}  =  - \overrightarrow {CB}  \cdot \overrightarrow {CA}  =  - \left| {\overrightarrow {CB} } \right| \cdot \left| {\overrightarrow {CA} } \right|\cos \widehat {ACB}\)

                    \( =  - CB \cdot CA \cdot \cos 30^\circ  =  - 2a \cdot a\sqrt 3  \cdot \frac{{\sqrt 3 }}{2} =  - 3{a^2}.\)

d) Đúng. Vì tam giác \(ABC\) vuông tại \(A\) nên \(\overrightarrow {CA}  \cdot \overrightarrow {AB}  = 0\).

Ta có \(\overrightarrow {AB}  \cdot \overrightarrow {BC}  =  - \overrightarrow {BA}  \cdot \overrightarrow {BC}  =  - {a^2},\overrightarrow {BC}  \cdot \overrightarrow {CA}  =  - 3{a^2}\).

Suy ra \(\overrightarrow {AB}  \cdot \overrightarrow {BC}  + \overrightarrow {BC}  \cdot \overrightarrow {CA}  + \overrightarrow {CA}  \cdot \overrightarrow {AB}  =  - {a^2} - 3{a^2} =  - 4{a^2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Ta có \(\overrightarrow {AE}  = \overrightarrow {AB}  + \overrightarrow {BE}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {BC}  = \overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} \).

b) Sai. \(\overrightarrow {AF}  = \overrightarrow {AB}  + \overrightarrow {BF}  = \overrightarrow {AB}  + \frac{3}{4}\overrightarrow {BD}  = \overrightarrow {AB}  + \frac{3}{4}\left( {\overrightarrow {AD}  - \overrightarrow {AB} } \right) = \frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} .\)

c) Đúng. \(\overrightarrow {EF}  = \overrightarrow {AF}  - \overrightarrow {AE}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) - \left( {\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AD} } \right) = \frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} .\)

d) Đúng. Ta có \(\overrightarrow {AF}  \cdot \overrightarrow {EF}  = \left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right) \cdot \left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)\)

                                        \( = \frac{{ - 3}}{{16}}{\overrightarrow {AB} ^2} - \frac{1}{2}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{3}{{16}}{\overrightarrow {AD} ^2} = 0 \Rightarrow AF \bot EF{\rm{. }}\)

Ta có \({\overrightarrow {AF} ^2} = {\left( {\frac{1}{4}\overrightarrow {AB}  + \frac{3}{4}\overrightarrow {AD} } \right)^2} = \frac{1}{{16}}{\overrightarrow {AB} ^2} + \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{9}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}\).

\({\overrightarrow {EF} ^2} = {\left( {\frac{{ - 3}}{4}\overrightarrow {AB}  + \frac{1}{4}\overrightarrow {AD} } \right)^2} = \frac{9}{{16}}{\overrightarrow {AB} ^2} - \frac{3}{8}\overrightarrow {AB}  \cdot \overrightarrow {AD}  + \frac{1}{{16}}{\overrightarrow {AD} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2}.\)

\( \Rightarrow {\overrightarrow {AF} ^2} = {\overrightarrow {EF} ^2} = \frac{5}{8}{\overrightarrow {AB} ^2} \Rightarrow AF = EF\). Vậy tam giác \(AEF\) vuông cân tại \(F\).

Lời giải

Ta có \[\overrightarrow a  \cdot \overrightarrow b  = \left| {\overrightarrow a } \right| \cdot \left| {\overrightarrow b } \right| \cdot \cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 3 \cdot 2 \cdot \cos 120^\circ  =  - 3\].

\[{\left| {\overrightarrow a  - 2\overrightarrow b } \right|^2} = {\left( {\overrightarrow a  - 2\overrightarrow b } \right)^2} = {\overrightarrow a ^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\overrightarrow b ^2} = {\left| {\overrightarrow a } \right|^2} - 4\overrightarrow a  \cdot \overrightarrow b  + 4{\left| {\overrightarrow b } \right|^2} = {3^2} - 4 \cdot \left( { - 3} \right) + 4 \cdot {2^2} = 37\]

\[ \Rightarrow \left| {\overrightarrow a  - 2\overrightarrow b } \right| = \sqrt {37}  \approx 6,1\].

Đáp án: 6,1.

Câu 5

A. \(5400\,\,{\rm{(J)}}\).                                      
B. \(4500\,\,{\rm{(J)}}\).     
C. \(1500\,\,{\rm{(J)}}\).     
D. \(450\,{\rm{(J)}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \( - 9{a^2}\).               
B. \(15{a^2}\).              
C. \(0\).                                
D. \(9{a^2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP