Câu hỏi:

05/08/2025 10 Lưu

Một máy bay đang bay từ hướng đông sang hướng tây với tốc độ \(700\) (km/h) thì gặp luồng gió thổi từ hướng đông bắc sang hướng tây nam với tốc độ \(40\) (km/h). Máy bay bị thay đổi vận tốc sau khi gặp gió thổi. Tìm vận tốc mới của máy bay (kết quả làm tròn đến hàng đơn vị theo đơn vị km/h).

Tìm vận tốc mới của máy bay (kết quả làm tròn đến hàng đơn vị theo đơn vị km/h). (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(\overrightarrow {{v_0}} \) là vận tốc riêng của máy bay \( \Rightarrow \left| {\overrightarrow {{v_0}} } \right| = 700\) (km/h).

 \(\overrightarrow {{v_1}} \) là vận tốc gió \( \Rightarrow \left| {\overrightarrow {{v_1}} } \right| = 40\) (km/h), \(\overrightarrow {{v_2}} \) là vận tốc của máy bay khi gặp gió.

Khi đó \(\overrightarrow {{v_2}}  = \overrightarrow {{v_0}}  + \overrightarrow {{v_1}} \).

Từ giả thiết, dễ thấy \(\left( {\overrightarrow {{v_0}} ,\overrightarrow {{v_1}} } \right) = 45^\circ \).

Ta có \({\overrightarrow {{v_2}} ^2} = {\left( {\overrightarrow {{v_0}}  + \overrightarrow {{v_1}} } \right)^2} = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\overrightarrow {{v_0}}  \cdot \overrightarrow {{v_1}}  = {\left| {\overrightarrow {{v_0}} } \right|^2} + {\left| {\overrightarrow {{v_1}} } \right|^2} + 2\left| {\overrightarrow {{v_0}} } \right| \cdot \left| {\overrightarrow {{v_1}} } \right| \cdot \cos 45^\circ \)

                \( = {700^2} + {40^2} + 2 \cdot 700 \cdot 40 \cdot \frac{{\sqrt 2 }}{2} = 491\,600 + 28\,000\sqrt 2 .\)

Suy ra \(\left| {\overrightarrow {{v_2}} } \right| = \sqrt {491\,600 + 28\,000\sqrt 2 }  \approx 729\) (km/h).

Đáp án: 729.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Ta có \(\overrightarrow {CM}  = \overrightarrow {BM}  - \overrightarrow {BC}  = \frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} \).

b) Sai. Vì \(G\) là trọng tâm của tam giác \(ACM\) nên

\(3\overrightarrow {BG}  = \overrightarrow {BA}  + \overrightarrow {BM}  + \overrightarrow {BC}  = \overrightarrow {BA}  + \frac{1}{2}\overrightarrow {BA}  + \overrightarrow {BC}  = \frac{3}{2}\overrightarrow {BA}  + \overrightarrow {BC}  \Rightarrow \overrightarrow {BG}  = \frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} .\)

c) Đúng. Vì \(ABCD\) là hình chữ nhật nên \(BA \bot BC\), suy ra \(\overrightarrow {BC}  \cdot \overrightarrow {BA}  = 0\).

d) Sai. Ta có \(\overrightarrow {BG}  \cdot \overrightarrow {CM}  = \left( {\frac{1}{2}\overrightarrow {BA}  + \frac{1}{3}\overrightarrow {BC} } \right) \cdot \left( {\frac{1}{2}\overrightarrow {BA}  - \overrightarrow {BC} } \right) = \frac{1}{4}{\overrightarrow {BA} ^2} - \frac{1}{3}\overrightarrow {BA}  \cdot \overrightarrow {BC}  - \frac{1}{3}{\overrightarrow {BC} ^2}\)

\( = \frac{1}{4} \cdot {\left( {4a} \right)^2} - \frac{1}{3} \cdot 0 - \frac{1}{3} \cdot {\left( {3a} \right)^2} = {a^2}.\) (\(BC = AD = 3a\)).

Lời giải

c (ảnh 1)

a) Sai. \(\overrightarrow {AB}  \cdot \overrightarrow {AC}  = AB \cdot AC\cos \widehat {BAC} = 2a \cdot 3a \cdot \cos 60^\circ  = 3{a^2}\).

b) Sai. Do \(I\) là trung điểm \(BC\) nên \(\overrightarrow {AI}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right) = \frac{1}{2}\overrightarrow {AB}  + \frac{1}{2}\overrightarrow {AC} \).

c) Đúng. Vì \(J \in AC\) và \(12AJ = 7AC\) nên \(\overrightarrow {AJ}  = \frac{7}{{12}}\overrightarrow {AC} \).

Khi đó, \(\overrightarrow {BJ}  = \overrightarrow {BA}  + \overrightarrow {AJ}  =  - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} \).

d) Đúng. Ta có \(\overrightarrow {AI}  \cdot \overrightarrow {BJ}  = \frac{1}{2}\left( {\overrightarrow {AB}  + \overrightarrow {AC} } \right)\left( { - \overrightarrow {AB}  + \frac{7}{{12}}\overrightarrow {AC} } \right)\)

\( = \frac{1}{2}\left( { - {{\overrightarrow {AB} }^2} + \frac{7}{{12}}\overrightarrow {AB}  \cdot \overrightarrow {AC}  - \overrightarrow {AB}  \cdot \overrightarrow {AC}  + \frac{7}{{12}}{{\overrightarrow {AC} }^2}} \right)\)

\( = \frac{1}{2}\left( { - 4{a^2} + \frac{7}{{12}} \cdot 3{a^2} - 3{a^2} + \frac{7}{{12}} \cdot 9{a^2}} \right) = 0\).

Vậy \(AI \bot BJ\).

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP