CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tính diện tích hình chiếu vuông góc của tam giác SBC lên mặt phẳng (SAB). (ảnh 1)

Gọi E là trung điểm của AB Þ AE = EB = AD = DC = 1.

Mà AE // CD nên AECD là hình thoi.

Lại có \(\widehat {ADC} = 90^\circ \) nên AECD là hình vuông.

Suy ra CE ^ AB mà SA ^ CE (do SA ^ (ABCD)) Þ CE ^ (SAB).

Do đó DSBE là hình chiếu vuông góc của tam giác SBC lên mặt phẳng (SAB).

Khi đó \({S_{\Delta SEB}} = \frac{1}{2}.SA.EB = \frac{1}{2}.3.1 = 1,5\).

Trả lời: 1,5.

Lời giải

Đường thẳng BC vuông góc với mặt phẳng (SAB). (ảnh 1)

a) Vì SA ^ (ABCD) nên SA ^ BC mà BC ^ AB nên BC ^ (SAB).

b) Vì SA ^ (ABCD) nên AC là hình chiếu của SC trên mặt phẳng (ABCD).

c) Vì SA ^ (ABCD) nên SA ^ BC .

d) Hình chóp S.ABCD có tất cả 4 mặt bên là (SAB); (SBC); (SAD); (SCD).

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Đúng.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP