Câu hỏi:

07/08/2025 22 Lưu

Cho tứ diện ABCD có AB, BC, BD đôi một vuông góc với nhau. Khẳng định nào dưới đây đúng? 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

B

Khẳng định nào dưới đây đúng? (ảnh 1)

Có AB ^ BC, AB ^ BD nên AB ^ (BCD).

Do đó BC là hình chiếu của AC trên mặt phẳng (BCD).

Do đó (AC, (BCD)) = (AC, BC) = \(\widehat {ACB}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng đáy. Tính số đo góc nhị diện [B, SA, D].  	 (ảnh 1)

Vì SA ^ AB, SA ^ AD nên \(\widehat {BAD}\) là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Do ABCD là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

Lời giải

B

Số đo của góc giữa SA và (ABC). (ảnh 1)

Vì SH ^ (ABC) nên HA là hình chiếu vuông góc của SA trên mặt phẳng (ABC).

Khi đó (SA, (ABC)) = (SA, AH) = \(\widehat {SAH}\).

DABC, DSBC  đều cạnh a, H là trung điểm BC nên \(AH = SH = \frac{{a\sqrt 3 }}{2}\).

Suy ra DSHA vuông cân tại H.

Do đó \(\widehat {SAH} = 45^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP