Câu hỏi:

07/08/2025 43 Lưu

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SC ^ (ABCD), CD = 4a; \(SC = \sqrt 5 a\). Số đo góc phẳng nhị diện [C, DA, S] gần nhất với kết quả 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

Số đo góc phẳng nhị diện [C, DA, S] gần nhất với kết quả (ảnh 1)

Ta có CD ^ DA, DA ^ SC Þ DA ^ (SDA) Þ DA ^ SD.

Do đó \(\widehat {SDC}\) là góc phẳng nhị diện của góc nhị diện [C, DA, S].

Xét DSCD vuông tại C nên ta có \(\tan \widehat {SDC} = \frac{{SC}}{{CD}} = \frac{{\sqrt 5 a}}{{4a}} = \frac{{\sqrt 5 }}{4} \Rightarrow \widehat {SDC} \approx 29,21^\circ \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng đáy. Tính số đo góc nhị diện [B, SA, D].  	 (ảnh 1)

Vì SA ^ AB, SA ^ AD nên \(\widehat {BAD}\) là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Do ABCD là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

Lời giải

B

Số đo của góc giữa SA và (ABC). (ảnh 1)

Vì SH ^ (ABC) nên HA là hình chiếu vuông góc của SA trên mặt phẳng (ABC).

Khi đó (SA, (ABC)) = (SA, AH) = \(\widehat {SAH}\).

DABC, DSBC  đều cạnh a, H là trung điểm BC nên \(AH = SH = \frac{{a\sqrt 3 }}{2}\).

Suy ra DSHA vuông cân tại H.

Do đó \(\widehat {SAH} = 45^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP