Câu hỏi:

07/08/2025 9 Lưu

Cho hình vuông ABCD tâm O, cạnh bằng 2. Trên đường thẳng qua O vuông góc với (ABCD) lấy điểm S. Biết góc giữa SA và mặt phẳng (ABCD) có số đo bằng 45°. Tính độ dài SO (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Tính độ dài SO (kết quả làm tròn đến hàng phần mười). (ảnh 1)

Vì SO ^ (ABCD) nên OA là hình chiếu vuông góc của SA trên mặt phẳng (ABCD).

Suy ra \(\widehat {SAO} = 45^\circ \).

ABCD là hình vuông cạnh bằng 2 nên \(AO = \frac{{AC}}{2} = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).

Xét DSAO vuông tại O có \(SO = AO.\tan \widehat {SAO} = \sqrt 2 \tan 45^\circ = \sqrt 2 \approx 1,4\).

Trả lời: 1,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

 Gọi M là trung điểm của SB. Góc giữa đường thẳng CM và mặt phẳng (SAB) bằng   (ảnh 1)

Vì SA ^ (ABC) nên SA ^ BC mà BC ^ AB nên BC ^ (SAB).

Suy ra BM là hình chiếu vuông góc của CM trên mặt phẳng (SAB).

Do đó (CM, (SAB)) = (CM, BM) = \(\widehat {CMB}\).

Xét DSAB vuông tại A có \(SB = \sqrt {S{A^2} + A{B^2}} = \sqrt {{{\left( {2a\sqrt 3 } \right)}^2} + {{\left( {2a} \right)}^2}} = 4a\).

Vì M là trung điểm của SB nên \(BM = \frac{{SB}}{2} = 2a\).

DABC vuông cân tại B nên BC = AB = 2a.

Vì BC ^ (SAB) Þ BC ^ SB Þ DSBC vuông tại B hay DMBC vuông tại M.

Xét DMBC có \(\tan \widehat {BMC} = \frac{{BC}}{{BM}} = 1 \Rightarrow \widehat {BMC} = 45^\circ \).

Lời giải

Do hai mặt phẳng (P) và (Q) vuông góc với nhau nên các góc nhị diện tạo bởi hai mặt phẳng đó là các góc vuông vì vậy chúng có số đo bằng 90°.

Trả lời: 90.

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP