Câu hỏi:

19/08/2025 21 Lưu

Cho hình vuông ABCD tâm O, cạnh bằng 2. Trên đường thẳng qua O vuông góc với (ABCD) lấy điểm S. Biết góc giữa SA và mặt phẳng (ABCD) có số đo bằng 45°. Tính độ dài SO (kết quả làm tròn đến hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tính độ dài SO (kết quả làm tròn đến hàng phần mười). (ảnh 1)

Vì SO ^ (ABCD) nên OA là hình chiếu vuông góc của SA trên mặt phẳng (ABCD).

Suy ra \(\widehat {SAO} = 45^\circ \).

ABCD là hình vuông cạnh bằng 2 nên \(AO = \frac{{AC}}{2} = \frac{{2\sqrt 2 }}{2} = \sqrt 2 \).

Xét DSAO vuông tại O có \(SO = AO.\tan \widehat {SAO} = \sqrt 2 \tan 45^\circ = \sqrt 2 \approx 1,4\).

Trả lời: 1,4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

B

Cho hình chóp S.ABCD có đáy là hình chữ nhật, SA vuông góc với mặt phẳng đáy. Tính số đo góc nhị diện [B, SA, D].  	 (ảnh 1)

Vì SA ^ AB, SA ^ AD nên \(\widehat {BAD}\) là góc phẳng nhị diện của góc nhị diện [B, SA, D].

Do ABCD là hình chữ nhật nên \(\widehat {BAD} = 90^\circ \).

Lời giải

B

Số đo của góc giữa SA và (ABC). (ảnh 1)

Vì SH ^ (ABC) nên HA là hình chiếu vuông góc của SA trên mặt phẳng (ABC).

Khi đó (SA, (ABC)) = (SA, AH) = \(\widehat {SAH}\).

DABC, DSBC  đều cạnh a, H là trung điểm BC nên \(AH = SH = \frac{{a\sqrt 3 }}{2}\).

Suy ra DSHA vuông cân tại H.

Do đó \(\widehat {SAH} = 45^\circ \).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP