Câu hỏi:

07/08/2025 99 Lưu

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 2a, AD = 3a. Biết SA vuông góc với mặt phẳng đáy và SA = 5a. Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng 

A. 3a.                       
B. 2a.                       
C. \(a\sqrt {13} \).
D. 5a.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A

Khoảng cách từ điểm C đến mặt phẳng (SAB) bằng (ảnh 1)

Vì SA ^ (ABCD) Þ SA ^ CB mà CB ^ AB nên CB ^ (SAB).

Do đó d(C, (SAB)) = CB = AD = 3a.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

D

Tính khoảng cách giữa hai đường thẳng SA và CD. (ảnh 1)

Vì SA ^ (ABCD) Þ SA ^ AD mà AD ^ DC nên d(SA, CD) = AD = BC = 2a.

Lời giải

D

Khoảng cách từ điểm B đến đường thẳng AC bằng (ảnh 1)

Ta có d(B, AC) = AB = 3a.

Câu 3

A. \(\frac{{a\sqrt {57} }}{{19}}\).                 
B. \(\frac{{2a\sqrt {57} }}{{19}}\).             
C. \(\frac{{2a\sqrt 3 }}{{19}}\).                     
D. \(\frac{{2a\sqrt {38} }}{{19}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{a\sqrt 3 }}{3}\).                           
B. \(a\sqrt 3 \).
C. \(\frac{{a\sqrt 2 }}{2}\).                           
D. \(a\sqrt 2 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(a\sqrt 3 \).        
B. a.                         
C. \(\frac{{a\sqrt 3 }}{4}\).                          
D. \(\frac{{a\sqrt 3 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP