Cho hình chóp S.ABCD có đáy là hình chữ nhật AB = a; BC = 2a, cạnh bên SA vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SA và CD.
Quảng cáo
Trả lời:
D

Vì SA ^ (ABCD) Þ SA ^ AD mà AD ^ DC nên d(SA, CD) = AD = BC = 2a.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
A

Vì SA ^ (ABCD) Þ SA ^ CB mà CB ^ AB nên CB ^ (SAB).
Do đó d(C, (SAB)) = CB = AD = 3a.
Lời giải

Gọi O là giao điểm của AC và BD.
Vì AB // CD nên AB // (SCD).
Khi đó d(AB, CD) = d(AB, (SCD)) = d(A, (SCD)).
Lại có \(\frac{{d\left( {A,\left( {SCD} \right)} \right)}}{{d\left( {O,\left( {SCD} \right)} \right)}} = \frac{{CA}}{{CO}} = 2\).
Hạ OM ^ CD, OH ^ SM
Vì SO ^ (ABCD) Þ SO ^ CD mà OM ^ CD Þ CD ^ (SOM) Þ CD ^ OH.
Lại có OH ^ SM nên OH ^ (SCD). Do đó d(O, (SCD)) = OH.
Ta có \(OM = \frac{1}{2}AD = 1\), \(AC = 2\sqrt 2 \Rightarrow OC = \sqrt 2 \).
Xét DSOC vuông tại O, \(SO = \sqrt {S{C^2} - O{C^2}} = \sqrt {{{\left( {2\sqrt 2 } \right)}^2} - {{\left( {\sqrt 2 } \right)}^2}} = \sqrt 6 \).
Xét DSOM vuông tại O, \(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}} = \frac{1}{6} + \frac{1}{1} = \frac{7}{6}\)Þ \(OH = \frac{{\sqrt {42} }}{7}\).
Khi đó d(A, (SCD)) = \(2.\frac{{\sqrt {42} }}{7} \approx 1,9\).
Trả lời: 1,9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.