Câu hỏi:

09/08/2025 4 Lưu

Cho \(F\left( x \right)\) là một nguyên hàm của \[f\left( x \right) = {2^x} + x + 1\]. Biết \(F\left( 0 \right) = 1\). Tính \(F\left( { - 1} \right)\) kết quả là.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn B

\[F\left( x \right) = \int {\left( {{2^x} + x + 1} \right){\rm{d}}x}  = \frac{1}{{\ln 2}}{2^x} + \frac{1}{2}{x^2} + x + C.\]

\[ \Rightarrow F\left( x \right) = \frac{1}{{\ln 2}}{2^x} + \frac{1}{2}{x^2} + x + C.\]

\(F\left( 0 \right) = 1 \Rightarrow 1 = \frac{1}{{\ln 2}}{2^0} + \frac{1}{2}{0^2} + 0 + C \Rightarrow C = 1 - \frac{1}{{\ln 2}}\)

\[ \Rightarrow F\left( x \right) = \frac{1}{{\ln 2}}{2^x} + \frac{1}{2}{x^2} + x + 1 - \frac{1}{{\ln 2}}\]

\( \Rightarrow F\left( { - 1} \right) = \frac{1}{{\ln 2}}{2^{ - 1}} + \frac{1}{2} - 1 + 1 - \frac{1}{{\ln 2}} \Rightarrow F\left( { - 1} \right) = \frac{1}{2} - \frac{1}{{2\ln 2}}\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Ta có :

\(h'\left( t \right) = \frac{1}{5}\sqrt[3]{t}\)

\( \Rightarrow h\left( t \right) = \int {\frac{1}{5}\sqrt[3]{t}} dx = \frac{1}{5}\int {{t^{\frac{1}{3}}}} dx = \frac{1}{5}\frac{{{t^{\frac{1}{3} + 1}}}}{{\frac{1}{3} + 1}} + C = \frac{3}{{20}}t\sqrt[3]{t} + C\)

\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t} + C\)

Chọn \(t = 0 \Rightarrow h\left( 0 \right) = 0 \Rightarrow C = 0\)

\( \Rightarrow h\left( t \right) = \frac{3}{{20}}t\sqrt[3]{t}\)

mức nước ở bồn sau khi bơm nước được 6 giây: \(h\left( 6 \right) = \frac{3}{{20}}.6\sqrt[3]{6} \approx 1,64m\)

Câu 2

Lời giải

Chọn B

Ta có: \(\int f (x)dx = \int {\left( {{e^x} + 2} \right)} dx = {e^x} + 2x + C\)

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP