Quảng cáo
Trả lời:
Đường thẳng \({\Delta _1}\) đi qua \({\rm{A}}( - 1;1;3)\) và có vectơ chí phương \(\overrightarrow {{u_1}} = (1;0;2)\)
Đường thẳng \({\Delta _2}\) đi qua \({\rm{B}}( - 1;2;1)\) và có vectơ chí phương \(\overrightarrow {{u_2}} = (2;1;3)\)
Có \(\overrightarrow {AB} = (0;1; - 2),\left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = ( - 2;1;1) \ne \vec 0\)
Có \(\overrightarrow {AB} \cdot \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = 1 - 2 = - 1 \ne 0\)
Do đó \({\Delta _1}\) và \({\Delta _2}\) chéo nhau.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đường thẳng d đi qua \({\rm{M}}(7;3;2)\) và có vectơ chí phương \(\vec a = (4; - 2; - 2)\)
Đường thắng d' đi qua \({\rm{N}}(3;5;4)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (2; - 1; - 1) = \frac{1}{2}\vec a\)
Thay tọa độ điếm M vào phương trình đường thắng d' ta được
\(\frac{{7 - 3}}{2} = \frac{{3 - 5}}{{ - 1}} = \frac{{2 - 4}}{{ - 1}}\) (luôn đúng). Suy ra điếm \({\rm{M}} \in {{\rm{d}}^\prime }\).
Vậy \({\rm{d}} \equiv d\) '.
b) Đường thắng d đi qua \({\rm{M}}(0;0;1)\) và có vectơ chỉ phương \(\vec a = (3;3;4)\)
Đường thẳng d' đi qua \({\rm{N}}(2;9;5)\) và có vectơ chí phương \(\overrightarrow {{a^\prime }} = (3;3;4) = \vec a\)
Thay tọa độ điếm M vào phương trình đường thắng \({{\rm{d}}^\prime }\) ta có:
\(\frac{{0 - 2}}{3} = \frac{{0 - 9}}{3} = \frac{{1 - 5}}{4}\) (vô lí). Suy ra \(M \notin {d^\prime }\).
Vậy d // d'.
Lời giải
Đường thắng d' có vectơ chí phương là \(\vec a = (3;2;4)\)
Vi d // d' nên đường thắng d nhận \(\vec a = (3;2;4)\) làm vectơ chỉ phương.
Đường thẳng d đi qua điếm \({\rm{A}}(1;0;1)\) và nhận \(\vec a = (3;2;4)\) làm vectơ chỉ phương có phương trình tham số là \(\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3t}\\{y = 2t}\\{z = 1 + 4t}\end{array}} \right.\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.