Câu hỏi:

10/08/2025 19 Lưu

Trong không gian với hệ tọa độ \[{\rm{Ox}}yz\], cho đường thẳng \({d_1}\) có véctơ chỉ phương \(\overrightarrow u  = \left( {1;0; - 2} \right)\) và đi qua điểm \(M\left( {1; - 3;2} \right)\), \({d_2}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 4}}{3}\). Phương trình mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) có dạng \[ax + by + cz + 11 = 0\]. Giá trị \(a + 2b + 3c\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Chọn D

Đường thẳng \({d_2}\) có véctơ chỉ phương \(\overrightarrow v  = \left( {1; - 2;3} \right)\) và đi qua điểm \(N\left( { - 3;1; - 4} \right)\)

Ta có: \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right) \ne \overrightarrow 0 \); \(\overrightarrow {MN}  = \left( { - 4;4; - 6} \right)\); \(\left[ {\overrightarrow v ,\overrightarrow u } \right].\overrightarrow {MN}  =  - 16 + 20 - 12 =  - 8 \ne 0\)

\( \Rightarrow \) \({d_1}\) và \({d_2}\) chéo nhau.

Mặt phẳng \(\left( P \right)\) cách đều hai đường thẳng \({d_1}\) và \({d_2}\) nên \(\left( P \right)\) nhận \(\left[ {\overrightarrow v ,\overrightarrow u } \right] = \left( {4;5;2} \right)\) làm một vectơ pháp tuyến và đi qua trung điểm \(I\left( { - 1; - 1; - 1} \right)\) của đoạn \(MN\)

Suy ra phương trình của \(\left( P \right)\): \(4\left( {x + 1} \right) + 5\left( {y + 1} \right) + 2\left( {z + 1} \right) = 0 \Leftrightarrow 4x + 5y + 2z + 11 = 0\)

\( \Rightarrow a = 4;b = 5;c = 2\) \( \Rightarrow a + 2b + 3c = 20\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn A

Đường thẳng \({d_1}\) đi qua \(A\left( {2;6; - 2} \right)\) và có một véc tơ chỉ phương \(\overrightarrow {{u_1}}  = \left( {2; - 2;1} \right)\).

Đường thẳng \({d_2}\) có một véc tơ chỉ phương \(\overrightarrow {{u_2}}  = \left( {1;3; - 2} \right)\).

Gọi \(\overrightarrow n \) là một véc tơ pháp tuyến của mặt phẳng \(\left( P \right)\). Do mặt phẳng \(\left( P \right)\) chứa \({d_1}\) và \(\left( P \right)\)song song với đường thẳng \({d_2}\) nên \[\overrightarrow n  = \left[ {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right] = \left( {1;5;8} \right)\].

Vậy phương trình mặt phẳng \(\left( P \right)\) đi qua \(A\left( {2;6; - 2} \right)\) và có một véc tơ pháp tuyến \[\overrightarrow n  = \left( {1;5;8} \right)\] là \(x + 5y + 8z - 16 = 0\).

Lời giải

Chọn A

Ta có: Đường thẳng \({d_1}\) đi qua điểm \(A\left( {2;0;0} \right)\) có VTCP là \[\overrightarrow {{u_1}}  = \left( { - 1;1;1} \right)\] và đường thẳng \({d_2}\) đi qua điểm \(A\left( {0;1;2} \right)\) có VTCP là \[\overrightarrow {{u_1}}  = \left( { - 2;1;1} \right)\]

Mặt phẳng \(\left( P \right)\) song song \({d_1};{d_2}\) nên \(\left( P \right)\) có VTPT là \[n = \left[ {\overrightarrow {{u_1}} ;\overrightarrow {{u_2}} } \right] = \left( {0; - 1;1} \right)\]

Do đó: Mặt phẳng \(\left( P \right)\) có dạng \(y - z + m = 0\)

Mặt khác: \(\left( P \right)\) cách đều hai đường thẳng \({d_1};{d_2}\) nên

\(d\left( {{d_1};\left( P \right)} \right) = d\left( {{d_2};\left( P \right)} \right) \Leftrightarrow d\left( {A;\left( P \right)} \right) = d\left( {B;\left( P \right)} \right) \Leftrightarrow \left| m \right| = \left| {m - 1} \right| \Leftrightarrow m = \frac{1}{2}\)

Vậy \(\left( P \right)\):\(y - z + \frac{1}{2} = 0 \Leftrightarrow 2y - 2z + 1 = 0\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP