Cho mặt phẳng \((P): - 3x + y - 2z + 5 = 0\).
a) Nếu \(\vec n\) là một vectơ pháp tuyến của \((P)\) thì \(k\vec n\) là một vectơ pháp tuyến của \((P)\) với \(k \ne 0\).
Cho mặt phẳng \((P): - 3x + y - 2z + 5 = 0\).
a) Nếu \(\vec n\) là một vectơ pháp tuyến của \((P)\) thì \(k\vec n\) là một vectơ pháp tuyến của \((P)\) với \(k \ne 0\).
Quảng cáo
Trả lời:
a- Đúng
Câu hỏi cùng đoạn
Câu 2:
b) Nếu \(\vec n\) và \({\vec n^\prime }\) đều là vectơ pháp tuyến của \((P)\) thì \(\vec n\) và \({\vec n^\prime }\) không cùng phương.
b) Nếu \(\vec n\) và \({\vec n^\prime }\) đều là vectơ pháp tuyến của \((P)\) thì \(\vec n\) và \({\vec n^\prime }\) không cùng phương.
Lời giải của GV VietJack
b- Sai
Câu 3:
c) Vectơ \(\vec n = ( - 3;1; - 2)\) không là một vectơ pháp tuyến của mặt phẳng \((P)\).
c) Vectơ \(\vec n = ( - 3;1; - 2)\) không là một vectơ pháp tuyến của mặt phẳng \((P)\).
Lời giải của GV VietJack
c-Sai
Câu 4:
d) Mọi vectơ pháp tuyến của mặt phẳng \((P)\) có tọa độ \(( - 3k;k; - 2k)\) với \(k \ne 0\).
d) Mọi vectơ pháp tuyến của mặt phẳng \((P)\) có tọa độ \(( - 3k;k; - 2k)\) với \(k \ne 0\).
Lời giải của GV VietJack
d - Đúng
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.