Cho mặt phẳng \((P): - 3x + y - 2z + 5 = 0\).
a) Nếu \(\vec n\) là một vectơ pháp tuyến của \((P)\) thì \(k\vec n\) là một vectơ pháp tuyến của \((P)\) với \(k \ne 0\).
Cho mặt phẳng \((P): - 3x + y - 2z + 5 = 0\).
a) Nếu \(\vec n\) là một vectơ pháp tuyến của \((P)\) thì \(k\vec n\) là một vectơ pháp tuyến của \((P)\) với \(k \ne 0\).
Quảng cáo
Trả lời:

a- Đúng
Câu hỏi cùng đoạn
Câu 2:
b) Nếu \(\vec n\) và \({\vec n^\prime }\) đều là vectơ pháp tuyến của \((P)\) thì \(\vec n\) và \({\vec n^\prime }\) không cùng phương.
b) Nếu \(\vec n\) và \({\vec n^\prime }\) đều là vectơ pháp tuyến của \((P)\) thì \(\vec n\) và \({\vec n^\prime }\) không cùng phương.

b- Sai
Câu 3:
c) Vectơ \(\vec n = ( - 3;1; - 2)\) không là một vectơ pháp tuyến của mặt phẳng \((P)\).
c) Vectơ \(\vec n = ( - 3;1; - 2)\) không là một vectơ pháp tuyến của mặt phẳng \((P)\).

c-Sai
Câu 4:
d) Mọi vectơ pháp tuyến của mặt phẳng \((P)\) có tọa độ \(( - 3k;k; - 2k)\) với \(k \ne 0\).
d) Mọi vectơ pháp tuyến của mặt phẳng \((P)\) có tọa độ \(( - 3k;k; - 2k)\) với \(k \ne 0\).

d - Đúng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
A. \(\overrightarrow {AB} = \left( {1;1; - 1} \right)\) SAI
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.