PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một vật chuyển động. Quãng đường \(s\left( t \right)\) (tính theo mét) vật đi được sau khoảng thời gian \(t\) (tính theo giây), \(t \ge 0\), được mô tả là một hàm số bậc ba có đồ thị như hình vẽ dưới đây.

Hỏi trong \(10\) giây đầu tiên, khoảng thời gian vật chuyển động nhanh dần kéo dài bao nhiêu giây?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Một vật chuyển động. Quãng đường \(s\left( t \right)\) (tính theo mét) vật đi được sau khoảng thời gian \(t\) (tính theo giây), \(t \ge 0\), được mô tả là một hàm số bậc ba có đồ thị như hình vẽ dưới đây.
Hỏi trong \(10\) giây đầu tiên, khoảng thời gian vật chuyển động nhanh dần kéo dài bao nhiêu giây?
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:

Giả sử \(s\left( t \right) = a{t^3} + b{t^2} + ct + d\,\,\left( {a \ne 0} \right).\)
Vì đồ thị hàm số \(s\left( t \right)\) đi qua các điểm \(\left( {0\,;\,0} \right)\), \(\left( {4\,;\,\frac{8}{3}\,} \right)\), \(\left( {8\,;\,\,\frac{{112}}{3}} \right)\) và \(\left( {10\,;\frac{{260}}{3}} \right)\) nên ta có
\(\left\{ \begin{array}{l}d = 0\\64a + 16b + 4c = \frac{8}{3}\\512a + 64b + 8c = \frac{{112}}{3}\\1000a + 100b + 10c = \frac{{260}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{6}\\b = - 1\\c = 2\\d = 0\end{array} \right.\). Do đó \(s\left( t \right) = \frac{1}{6}{t^3} - {t^2} + 2t.\)
Ta có \(v\left( t \right) = s'\left( t \right) = \frac{1}{2}{t^2} - 2t + 2 \Rightarrow \)\(v'\left( t \right) = t - 2 = 0 \Leftrightarrow t = 2.\)
Bảng biến thiên:
Dựa vào bảng biến thiên, từ giây thứ \(2\) trở đi vận tốc của vật tăng dần theo thời gian. Do đó trong \(10\) giây đầu tiên, khoảng thời gian vật chuyển động nhanh dần kéo dài trong \(8\) giây.
Đáp án: \(8\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(\overrightarrow {SA} = \left( {0;1; - 5} \right),\,\,\,\overrightarrow {SB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right),\,\,\overrightarrow {SC} \left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right)\,\).
\(\overrightarrow {AB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right),\,\,\,\overrightarrow {BC} = \left( {\sqrt 3 ;0;0} \right),\,\,\overrightarrow {AC} = \left( {\frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right) \Rightarrow AB = BC = AC = 3\).
Ta có \(SA = SB = SC = \sqrt {26} \) nên hình chiếu của \(S\) trên \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\) mà lại có \(\Delta ABC\) đều nên \(SO \bot \left( {ABC} \right)\).
Giả sử \(\overrightarrow {{F_1}} = k\overrightarrow {SA} ,\,\,\,\overrightarrow {{F_2}} = k\overrightarrow {SB} ,\,\,\,\overrightarrow {{F_3}} = k\overrightarrow {SC} \,\,\,\left( {k > 0} \right)\)
\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = k\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) = \left( {0;0; - 15k} \right)\).
Theo bài ta lại có \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 60 \Rightarrow 15k = 60 \Rightarrow k = 4\).
Vậy \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| + \left| {\overrightarrow {{F_3}} } \right| = 4\left( {SA + SB + SC} \right) = 12\sqrt {26} \) (N).
Lời giải
a) Đúng. Xét \(S\left( x \right) = - 2{x^3} + 27{x^2} + 216x + 150\), ta có \(S'\left( x \right) = - 6{x^2} + 54x + 216.\)
b) Sai. Nếu không chi tiền cho quảng cáo thì số sản phẩm công ty A bán được là \(S\left( 0 \right) = 150.\)
c) Sai. Xét hàm số \(S\left( x \right) = - 2{x^3} + 27{x^2} + 216x + 150\) với \[x \in \left[ {11;12} \right]\].
\(S'\left( x \right) = - 6{x^2} + 54x + 216;\,\,S'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12\,\,\,{\rm{(tm)}}\\x = - 3\,\,{\rm{(loai)}}\end{array} \right..\)
Ta có \(S\left( {11} \right) = 3131;\,\,\,S\left( {12} \right) = 3174\). Bảng biến thiên:
Do đó nếu công ty A chi 11 triệu đồng đến 12 triệu đồng cho quảng cáo loại sản phẩm này thì số lượng sản phẩm công ty A bán được đạt tối đa bằng 3174 sản phẩm.
d) Đúng. Từ bảng biến thiên, ta thấy nếu công ty A chi từ 11 triệu đồng đến 12 triệu đồng cho quảng cáo loại sản phẩm này thì số lượng sản phẩm bán được sẽ tăng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.