Trong không gian \(Oxyz\), một chiếc máy quay phim được đặt trên một giá đỡ ba chân với điểm đặt \(S\left( {0;0;5} \right)\) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \(A\left( {0;1;0} \right),\,\,B\left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right),\) \(C\left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right)\) (hình vẽ). Biết lực tác dụng của máy quay phim lên các giá đỡ \(SA,\,\,SB,\,\,SC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) và trọng lượng của chiếc máy là \(60\,{\rm{N}}\), giá trị của \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| + \left| {\overrightarrow {{F_3}} } \right|\) bằng bao nhiêu Newton?

Trong không gian \(Oxyz\), một chiếc máy quay phim được đặt trên một giá đỡ ba chân với điểm đặt \(S\left( {0;0;5} \right)\) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \(A\left( {0;1;0} \right),\,\,B\left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right),\) \(C\left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0} \right)\) (hình vẽ). Biết lực tác dụng của máy quay phim lên các giá đỡ \(SA,\,\,SB,\,\,SC\) lần lượt là \(\overrightarrow {{F_1}} ,\,\,\overrightarrow {{F_2}} ,\,\,\overrightarrow {{F_3}} \) và trọng lượng của chiếc máy là \(60\,{\rm{N}}\), giá trị của \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| + \left| {\overrightarrow {{F_3}} } \right|\) bằng bao nhiêu Newton?

Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 12 có đáp án !!
Quảng cáo
Trả lời:
\(\overrightarrow {SA} = \left( {0;1; - 5} \right),\,\,\,\overrightarrow {SB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right),\,\,\overrightarrow {SC} \left( {\frac{{\sqrt 3 }}{2}; - \frac{1}{2}; - 5} \right)\,\).
\(\overrightarrow {AB} = \left( { - \frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right),\,\,\,\overrightarrow {BC} = \left( {\sqrt 3 ;0;0} \right),\,\,\overrightarrow {AC} = \left( {\frac{{\sqrt 3 }}{2}; - \frac{3}{2};0} \right) \Rightarrow AB = BC = AC = 3\).
Ta có \(SA = SB = SC = \sqrt {26} \) nên hình chiếu của \(S\) trên \(\left( {ABC} \right)\) là tâm đường tròn ngoại tiếp \(\Delta ABC\) mà lại có \(\Delta ABC\) đều nên \(SO \bot \left( {ABC} \right)\).
Giả sử \(\overrightarrow {{F_1}} = k\overrightarrow {SA} ,\,\,\,\overrightarrow {{F_2}} = k\overrightarrow {SB} ,\,\,\,\overrightarrow {{F_3}} = k\overrightarrow {SC} \,\,\,\left( {k > 0} \right)\)
\( \Rightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = k\left( {\overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} } \right) = \left( {0;0; - 15k} \right)\).
Theo bài ta lại có \(\left| {\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} } \right| = 60 \Rightarrow 15k = 60 \Rightarrow k = 4\).
Vậy \(\left| {\overrightarrow {{F_1}} } \right| + \left| {\overrightarrow {{F_2}} } \right| + \left| {\overrightarrow {{F_3}} } \right| = 4\left( {SA + SB + SC} \right) = 12\sqrt {26} \) (N).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giả sử \(s\left( t \right) = a{t^3} + b{t^2} + ct + d\,\,\left( {a \ne 0} \right).\)
Vì đồ thị hàm số \(s\left( t \right)\) đi qua các điểm \(\left( {0\,;\,0} \right)\), \(\left( {4\,;\,\frac{8}{3}\,} \right)\), \(\left( {8\,;\,\,\frac{{112}}{3}} \right)\) và \(\left( {10\,;\frac{{260}}{3}} \right)\) nên ta có
\(\left\{ \begin{array}{l}d = 0\\64a + 16b + 4c = \frac{8}{3}\\512a + 64b + 8c = \frac{{112}}{3}\\1000a + 100b + 10c = \frac{{260}}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = \frac{1}{6}\\b = - 1\\c = 2\\d = 0\end{array} \right.\). Do đó \(s\left( t \right) = \frac{1}{6}{t^3} - {t^2} + 2t.\)
Ta có \(v\left( t \right) = s'\left( t \right) = \frac{1}{2}{t^2} - 2t + 2 \Rightarrow \)\(v'\left( t \right) = t - 2 = 0 \Leftrightarrow t = 2.\)
Bảng biến thiên:

Dựa vào bảng biến thiên, từ giây thứ \(2\) trở đi vận tốc của vật tăng dần theo thời gian. Do đó trong \(10\) giây đầu tiên, khoảng thời gian vật chuyển động nhanh dần kéo dài trong \(8\) giây.
Đáp án: \(8\).
Lời giải

Đặt \(OH = x\left( {0 \le x \le 1} \right)\) ta có \(OA = OB = \sqrt {{{\left( {\frac{3}{2}} \right)}^2} + {x^2}} = \sqrt {\frac{9}{4} + {x^2}} \) và \(OC = 1 - x\).
Tổng độ dài các dây xích là
\(L\left( x \right) = 2\left( {OA + OB + OC} \right)\) \( = 2\left( {2\sqrt {\frac{9}{4} + {x^2}} + 1 - x} \right)\)\( = 4\sqrt {\frac{9}{4} + {x^2}} + 2 - 2x\).
\(L'\left( x \right) = \frac{{4x}}{{\sqrt {\frac{9}{4} + {x^2}} }} - 2 = 0\)\( \Leftrightarrow \sqrt {\frac{9}{4} + {x^2}} = 2x \Leftrightarrow \left\{ \begin{array}{l}x \ge 0\\4{x^2} = {x^2} + \frac{9}{4}\end{array} \right.\) \( \Leftrightarrow x = \frac{{\sqrt 3 }}{2}.\)
Bảng biến thiên:

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

