Câu hỏi:

20/08/2025 88 Lưu

Cho hình bình hành \(ABCD\) và một điểm \(S\) không thuộc mặt phẳng \(\left( {ABCD} \right)\), các điểm \(M,N\) lần lượt là trung điểm của đoạn thẳng \(AB,SC\). Gọi \(O = AC \cap BD\).

a) \(SO\) giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

b) Giao điểm của \(I\) của đường thẳng \(AN\) và mặt phẳng \(\left( {SBD} \right)\) là điểm nằm trên đường thẳng \(SO\).

c) Giao điểm của \(J\) của đường thẳng \(MN\) và mặt phẳng \(\left( {SBD} \right)\) là điểm nằm trên đường thẳng \(SD\).

d) Ba điểm \(I,J,B\) thẳng hàng.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

A diagram of a pyramid

AI-generated content may be incorrect.

a) Đúng. \(SO\) giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\)\(\left( {SBD} \right)\).

b) Đúng. Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(I = SO \cap AN\).

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I = AN \cap \left( {SBD} \right)} \right.\).

c) Sai. Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(P = CM \cap BD\);

Trong mặt phẳng \(\left( {SCM} \right)\), gọi \(J = MN \cap SP\);

Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J = MN \cap \left( {SBD} \right)} \right.\).

d) Đúng. Dễ thấy \(B \in \left( {ABN} \right) \cap \left( {SBD} \right)\). (1)

Ta có \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset \left( {ABN} \right)}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (2)

Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset \left( {ABN} \right)}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (3)

Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \(\left( {ABN} \right)\)\(\left( {SBD} \right)\) nên ba điểm này thẳng hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi số chiếc bàn và số chiếc ghế mà xưởng sản xuất trong một ngày lần lượt là \(x\), \(y\) (chiếc) \(\left( {x \ge 0,\,y \ge 0;\,x,y \in \mathbb{Z}} \right)\).

Số giờ lắp ráp là \(1,5x + y\) và số giờ hoàn thiện là \(x + 2y\).

Do bộ phận lắp ráp có \(3\) công nhân và mỗi công nhân không làm việc quá \(8\) giờ một ngày, nên ta có bất phương trình \(1,5x + y \le 24\).

Do bộ phận hoàn thiện có \(4\) công nhân và mỗi công nhân làm việc không quá \(8\) giờ một ngày, nên ta có bất phương trình \(x + 2y \le 32\).

Do lượng ghế tiêu thụ không vượt quá \(3,5\) lần số bàn nên \(y \le 3,5x\)\( \Leftrightarrow 3,5x - y \ge 0\).

Ta có hệ bất phương trình sau \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\1,5x + y \le 24\\x + 2y \le 32\\3,5x - y \ge 0\end{array} \right.\).

Miền nghiệm của hệ bất phương trình trên là miền tứ giác \(OABC\) như hình vẽ với \(O\left( {0;0} \right)\), \(A\left( {4;14} \right)\), \(B\left( {8;12} \right)\), \(C\left( {16;0} \right)\).

Ảnh có chứa hàng, hình tam giác, biểu đồ, hình vẽ

Mô tả được tạo tự động

Số tiền lãi thu được là \(T\left( {x;y} \right) = 600x + 450y\) (nghìn đồng).

Dễ dàng tính được \(T\left( {0;0} \right) = 0\), \(T\left( {4;14} \right) = 8700\), \(T\left( {8;12} \right) = 10200\)\(T\left( {16;0} \right) = 9600\).

Vậy để thu được tiền lãi cao nhất thì một ngày xưởng sản xuất \(8\) chiếc bàn và \(12\) chiếc ghế. Khi đó tiền lãi mỗi ngày là \(10\,200\,000\) đồng.

Lời giải

Ta có \(\left( {BMC} \right) \cap \left( {ABCD} \right) = BC\), \(\left( {BMC} \right) \cap \left( {SAB} \right) = BM\)

\(\left( {BMC} \right) \cap \left( {SAD} \right) = Mx,\,\,Mx\,{\rm{//}}\,AD\,{\rm{//}}\,BC,\,Mx \cap SD = N\), \(\left( {BMC} \right) \cap \left( {SCD} \right) = NC\).

Ta có \(\left\{ \begin{array}{l}MN = \frac{1}{2}AD\\MN{\rm{//}}AD\end{array} \right.\) suy ra \(\left\{ \begin{array}{l}MN = BC\\MN\,{\rm{//}}\,BC\end{array} \right.\) nên \(BMNC\) là hình bình hành. Chọn A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP