Cho tam giác đều \(ABC\) có độ dài cạnh bằng 6. Lấy điểm \(M\) trên cạnh \(BC\) sao cho \(MB = 2MC\). Tính tích vô hướng của hai vectơ \(\overrightarrow {MA} \) và \(\overrightarrow {MB} \).
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 11 có đáp án !!
Quảng cáo
Trả lời:
Ta có \(BM = 4\); \(M{A^2} = B{A^2} + B{M^2} - 2BA \cdot BM \cdot \cos 60^\circ = 28\).
Khi đó, \[\overrightarrow {MA} \cdot \overrightarrow {MB} = \left| {\overrightarrow {MA} } \right| \cdot \left| {\overrightarrow {MB} } \right| \cdot \cos \left( {\overrightarrow {MA} ,\overrightarrow {MB} } \right) = MA \cdot MB \cdot \cos \widehat {AMB}\]
\[ = MA \cdot MB \cdot \frac{{M{A^2} + M{B^2} - A{B^2}}}{{2MA \cdot MB}} = \frac{1}{2}\left( {M{A^2} + M{B^2} - A{B^2}} \right) = 4\].
Đáp án: 4.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. \(SO\) giao tuyến của hai mặt phẳng \(\left( {SAC} \right)\) và \(\left( {SBD} \right)\).
b) Đúng. Trong mặt phẳng \(\left( {SAC} \right)\), gọi \(I = SO \cap AN\).
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{I \in AN}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I = AN \cap \left( {SBD} \right)} \right.\).
c) Sai. Trong mặt phẳng \(\left( {ABCD} \right)\), gọi \(P = CM \cap BD\);
Trong mặt phẳng \(\left( {SCM} \right)\), gọi \(J = MN \cap SP\);
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J = MN \cap \left( {SBD} \right)} \right.\).
d) Đúng. Dễ thấy \(B \in \left( {ABN} \right) \cap \left( {SBD} \right)\). (1)
Ta có \(\left\{ {\begin{array}{*{20}{l}}{I \in AN,AN \subset \left( {ABN} \right)}\\{I \in SO,SO \subset \left( {SBD} \right)}\end{array} \Rightarrow I \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (2)
Tương tự: \(\left\{ {\begin{array}{*{20}{l}}{J \in MN,MN \subset \left( {ABN} \right)}\\{J \in SP,SP \subset \left( {SBD} \right)}\end{array} \Rightarrow J \in \left( {ABN} \right) \cap \left( {SBD} \right)} \right.\). (3)
Từ (1), (2), (3) suy ra \(B,I,J\) cùng thuộc giao tuyến của hai mặt phẳng \(\left( {ABN} \right)\) và \(\left( {SBD} \right)\) nên ba điểm này thẳng hàng.
Lời giải
Vật chuyển động có công thức vận tốc dạng hàm số bậc hai.
Ta có \(t = - \frac{b}{{2a}} = - \frac{{ - 4}}{{2 \cdot \frac{1}{2}}} = 4 \Rightarrow {v_{\min }} = \frac{1}{2} \cdot {4^2} - 4 \cdot 4 + 10 = 2\,\,{\rm{(m/s)}}\).
Vậy vận tốc của vật đạt giá trị nhỏ nhất bằng \[2\,\,{\rm{m/s}}\].
Đáp án: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.