Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
b) Đường thẳng \(\Delta \) đi qua điểm \(M\left( {2; - 1;3} \right)\);
Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
b) Đường thẳng \(\Delta \) đi qua điểm \(M\left( {2; - 1;3} \right)\);
Quảng cáo
Trả lời:
b) Đường thẳng \(\Delta \) đi qua điểm \(M\left( {2; - 1;3} \right)\);
Chọn đúng
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Lời giải
d) Đường thẳng \(\Delta \) có một vectơ chỉ phương là \(\vec u = \left( {1;\,2;\, - 1} \right)\)
\(\vec n = \left( {1;\, - 1;\,2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\)
Khi đó \(\sin \left( {\Delta ,\left( P \right)} \right) = \frac{{\left| {1.1 + 2.( - 1) + ( - 1).2} \right|}}{{\sqrt 6 .\sqrt 6 }} = \frac{1}{2}\)
Do vậy, góc giữa đường thẳng \(\Delta \) và mặt phẳng \(\left( P \right)\) bằng 300Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.