Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \cos \left( {\vec u,\,\overrightarrow {u'} } \right) = \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Cho hai đường thẳng \(\Delta :\left\{ \begin{array}{l}x = 2 + t\\y = - 1 + t\\z = 3\end{array} \right.\) và \(\Delta ':\left\{ \begin{array}{l}x = 1 - s\\y = 2\\z = - 2 + s\end{array} \right.\).
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \cos \left( {\vec u,\,\overrightarrow {u'} } \right) = \frac{{\vec u.\overrightarrow {u'} }}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Quảng cáo
Trả lời:
c) Gọi \(\vec u\), \(\overrightarrow {u'} \) lần lượt là vectơ chỉ phương của hai đường thẳng \(\Delta \) và \(\Delta '\). Khi đó, công thức tính góc giữa hai đường thẳng \(\Delta \) và \(\Delta '\) là \(\cos \left( {\Delta ,\,\Delta '} \right) = \left| {\cos \left( {\vec u,\,\overrightarrow {u'} } \right)} \right| = \frac{{\left| {\vec u.\overrightarrow {u'} } \right|}}{{\left| {\vec u} \right|.\left| {\overrightarrow {u'} } \right|}}\);
Chọn Sai
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Lời giải

a) Gọi \(C\left( {x;\,y;\,z} \right)\)
Vì đáy \(OBCD\) là hình chữ nhật nên \(\overrightarrow {OD} = \overrightarrow {BC} \)\( \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 0\\y - 0 = 2\\z - 0 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 0\end{array} \right.\)
Vậy \(C\left( {1;\,2;\,0} \right)\).
Chọn Sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.