Cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{2} = \frac{{z - 1}}{{ - 1}}\) và mặt phẳng \(\left( P \right):x - y + 2z = 1\).
a) \(\vec n = \left( {1;\, - 1;\,2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\);
Cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{2} = \frac{{z - 1}}{{ - 1}}\) và mặt phẳng \(\left( P \right):x - y + 2z = 1\).
a) \(\vec n = \left( {1;\, - 1;\,2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\);
Quảng cáo
Trả lời:

a) \(\vec n = \left( {1;\, - 1;\,2} \right)\) là một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\);
Chọn đúng
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Lời giải
a) Chọn đúng
Ta có: \({\vec n_1} = (2; - 3; - 6)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_1}} \right)\), \({\vec n_2} = (2;2;1)\) là một vectơ pháp tuyến của mặt phẳng \(\left( {{P_2}} \right)\).
\(\cos \alpha = \frac{{\left| {{{\vec n}_1} \cdot {{\vec n}_2}} \right|}}{{\left| {{{\vec n}_1}} \right| \cdot \left| {{{\vec n}_2}} \right|}} = \frac{{|2 \cdot 2 + ( - 3) \cdot 2 + ( - 6) \cdot 1|}}{{\sqrt {{2^2} + {{( - 3)}^2} + {{( - 6)}^2}} \cdot \sqrt {{2^2} + {2^2} + {1^2}} }} = \frac{8}{{21}}.\) Suy raLời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.