Cho mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0\) và mặt phẳng \(\left( Q \right):x - y + mz + 1 = 0\).
d) Hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\) vuông góc với nhau khi \(m = 1\).
Cho mặt phẳng \(\left( P \right):x + 2y - z + 1 = 0\) và mặt phẳng \(\left( Q \right):x - y + mz + 1 = 0\).
d) Hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\) vuông góc với nhau khi \(m = 1\).
Quảng cáo
Trả lời:

d) Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\vec n = \left( {1;\,2;\, - 1} \right)\)
Khi \(m = 1\), mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\vec n' = \left( {1;\, - 1;\,1} \right)\)
Khi đó \(\vec n.\vec n' = 1.1 + 2.( - 1) + ( - 1).(1) = - 2 \ne 0\).
Do vậy, hai mặt phẳng \(\left( P \right)\), \(\left( Q \right)\) không vuông góc với nhau khi \(m = 1\).
Chọn Sai
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Lời giải

a) Gọi \(C\left( {x;\,y;\,z} \right)\)
Vì đáy \(OBCD\) là hình chữ nhật nên \(\overrightarrow {OD} = \overrightarrow {BC} \)\( \Leftrightarrow \left\{ \begin{array}{l}x - 1 = 0\\y - 0 = 2\\z - 0 = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x = 1\\y = 2\\z = 0\end{array} \right.\)
Vậy \(C\left( {1;\,2;\,0} \right)\).
Chọn Sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.