Câu hỏi:

14/08/2025 70 Lưu

Trong không gian Oxyz, xét vị trí tương đối của các cặp đường thẳng sau:

a) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + t}\\{y = 2t}\\{z = 3 - t}\end{array}\quad (t \in \mathbb{R})} \right.\) và \({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 2 + 2{t^\prime }}\\{y = 3 + 4{t^\prime }\left( {{t^\prime } \in \mathbb{R}} \right);}\\{z = 5 - 2{t^\prime }}\end{array}} \right.\)

b) \(d:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 2t}\\{y =  - 1 + 3t(t \in \mathbb{R}){\rm{ và  }}{d^\prime }:\frac{{x - 1}}{3} = \frac{{y + 2}}{2} = \frac{{z + 1}}{2}}\\{z = 5 + t}\end{array}} \right.\)

c) \(d:\frac{x}{1} = \frac{{y - 1}}{{ - 1}} = \frac{z}{2}\) và \({d^\prime }:\frac{{x - 1}}{5} = \frac{{y - 2}}{1} = \frac{{z + 2}}{{ - 2}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có các vectơ chỉ phương của \(d\) và \({d^\prime }\) lân lượt là \(\vec a = (1;2; - 1)\) và \(\overrightarrow {{a^\prime }}  = (2;4; - 2)\). \({\rm{Vi}}\overrightarrow {{a^\prime }}  = 2\vec a\) nên \(\vec a\) và \(\overrightarrow {{a^\prime }} \) cùng phương. Từ đó suy ra \(d\) và \({d^\prime }\) song song với nhau hoặc trùng nhau.

Xét điểm \(M(1;0;3) \in d\), ta có \(M \notin {d^\prime }\) nên \(d//{d^\prime }\).

b) Ta có \(d\) và \({d^\prime }\) lản lượt nhận \(\vec a = (2;3;1)\) và \(\overrightarrow {{a^\prime }}  = (3;2;2)\) là các vectơ chỉ phương. Vi \(\vec a\) và \(\overrightarrow {{a^\prime }} \) không cùng phương nên \(d\) và \({d^\prime }\) cắt nhau hoặc chéo nhau. \({d^\prime }\) đi qua \(M(1; - 2; - 1)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }}  = (3;2;2)\) nên có phương trình tham số là:

\({d^\prime }:\left\{ {\begin{array}{*{20}{l}}{x = 1 + 3{t^\prime }}\\{y =  - 2 + 2{t^\prime }\left( {{t^\prime } \in \mathbb{R}} \right).}\\{z =  - 1 + 2{t^\prime }}\end{array}} \right.\)\({t^\prime } =  - \frac{2}{5}\), thay vào (3), ta thấy \(t\) và \({t^\prime }\) không thoả mãn (3).

Ta suy ra hệ phương trình trên vô nghiệm. Vậy hai đường thẳng \(d\) và \({d^\prime }\) chéo nhau.

c) Ta có: \(d\) đi qua \(M(0;1;0)\) và có vectơ chỉ phương \(\vec a = (1; - 1;2)\); \({d^\prime }\) đi qua \({M^\prime }(1;2; - 2)\) và có vectơ chỉ phương \(\overrightarrow {{a^\prime }}  = (5;1; - 2)\).

Nên phương trình tham số của \(d\) và \({d^\prime }\) lẩn lượt là:

Xét hệ phương trình \(\left\{ {\begin{array}{*{20}{l}}{t = 1 + 5{t^\prime }}\\{1 - t = 2 + {t^\prime }}\\{2t =  - 2 - 2{t^\prime }}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t - 5{t^\prime } = 1}\\{ - t - {t^\prime } = 1}\\{2t + 2{t^\prime } =  - 2}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{t =  - \frac{2}{3}}\\{{t^\prime } =  - \frac{1}{3}}\end{array}} \right.} \right.} \right.\)

Hệ phương trình trên có đúng một nghiệm, nên \(d\) và \({d^\prime }\) cắt nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đường thả̉ng \({\Delta _1}\) đi qua điếm \({\rm{A}}(1; - 2;3)\) và có vectơ chí phương \(\overrightarrow {{u_{{\Delta _1}}}}  = (1;1;4)\) Đường thắng \({\Delta _2}\) đi qua điếm \({\rm{B}}( - 1; - 1;0)\) và có vectơ chí phương \(\overrightarrow {{u_{{\Delta _2}}}}  = (1;1;4)\)

a) vi \(\overrightarrow {{u_{{\Delta _1}}}}  = \overrightarrow {{u_{{\Delta _2}}}}  = (1;1;4)\) và \(A \notin {\Delta _2}\) nên hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

b) Trục OX đi qua điếm \({\rm{O}}(0;0;0)\) và có vectơ chỉ phương là \(\vec i = (1;0;0)\)

Có \(\overrightarrow {OA}  = (1; - 2;3)\) và \(\left[ {\vec i,\overrightarrow {{u_{{\Delta _1}}}} } \right] = (0; - 4;1)\).

Có \(\overrightarrow {OA}  \cdot \left[ {\vec i,\overrightarrow {{u_{{\Delta _1}}}} } \right] = 8 + 3 = 11 \ne 0\). Do đó đường thẳng \({\Delta _1}\) và trục Ox chéo nhau.

c) Đường thắng \({\Delta _3}\) đi qua điểm \({\rm{C}}( - 2; - 2; - 4)\) và có vectơ chỉ phương .

vi \(\overrightarrow {{u_{{\Delta _2}}}}  = \overrightarrow {{u_{{\Delta _3}}}}  = (1;1;4)\) và \({\rm{B}} \in {\Delta _3}\) nên đường thắng \({\Delta _2}\) trùng với đường thắng \({\Delta _3}\).

d) Trục Oz đi qua điếm \({\rm{O}}(0;0;0)\) và có vectơ chỉ phương là \(\vec k = (0;0;1)\).

Có \(\overrightarrow {OB}  = ( - 1; - 1;0),\left[ {\vec k,\overrightarrow {{u_{{\Delta _2}}}} } \right] = ( - 1;1;0) \ne \vec 0\)

Có \(\overrightarrow {OB}  \cdot \left[ {\vec k,\overrightarrow {{u_{{\Delta _2}}}} } \right] = 1 - 1 = 0\). Do đó đường thắng \({\Delta _2}\) cắt trục Oz .

Lời giải

a) Đường thẳng \({\Delta _1}\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ chỉ phương \(\overrightarrow {{u_1}}  = (3;1;2)\)

Đường thẳng \({\Delta _2}\) đi qua \({\rm{B}}(1; - 1;0)\) và có vectơ chỉ phương \(\overrightarrow {{u_2}}  = (3;1;2)\)

vi \(\overrightarrow {{u_1}}  = \overrightarrow {{u_2}}  = (3;1;2)\) và \({\rm{A}} \notin {\Delta _2}\) do đó \({\Delta _1}\) và \({\Delta _2}\) song song với nhau.

b) Có \(\overrightarrow {AB}  = (0; - 4; - 2)\)

Mặt phắng (P) chứa \({\Delta _1}\) và \({\Delta _2}\) có một vectơ pháp tuyến là \(\vec n = \left[ {\overrightarrow {AB} ,\overrightarrow {{u_1}} } \right] = ( - 6; - 6;12)\)

Mặt phắng \(({\rm{P}})\) đi qua \({\rm{A}}(1;3;2)\) và có vectơ pháp tuyến \(\vec n = ( - 6; - 6;12)\) có phương trình là: \( - 6({\rm{X}} - \) 1) \( - 6(y - 3) + 12(z - 2) = 0 \Leftrightarrow 6x + 6y - 12z = 0\) hay \(x + y - 2z = 0\).