Nhóm I có 4 học sinh nam và 2 học sinh nữ. Cô giáo chọn ngẫu nhiên 2 học sinh của nhóm I để tham gia một trò chơi. Tính xác suất để 2 học sinh được chọn có ít nhất một học sinh nữ
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 10 có đáp án !!
Quảng cáo
Trả lời:

Kí hiệu 4 học sinh nam lần lượt là X1, X2, X3, X4 và 2 học sinh nữ lần lượt là Y1, Y2.
Không gian mẫu của phép thử là:
\(\Omega = \){X1X2; X1X3; X1X4; X2X3; X2X4; X3X4; Y1Y2; X1Y1; X1Y2; X2Y1; X2Y2; X3Y1; X3Y2; X4Y1; X4Y2}.
Không gian mẫu có 15 phần tử.
Gọi A là biến cố: “Hai học sinh được chọn có ít nhất một học sinh nữ”.
Có 9 kết quả thuận lợi cho biến cố A là: Y1Y2; X1Y1; X1Y2; X2Y1; X2Y2; X3Y1; X3Y2; X4Y1; X4Y2.
Xác suất của biến cố A là: \(\frac{9}{{15}} = \frac{3}{5} = 0,6.\)
Đáp án: 0,6.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải phương trình:
\(\left( {2x + 6} \right)\left( {12 - 3x} \right) = 0\)
\(2x + 6 = 0\) hoặc \(12 - 3x = 0\)
\(2x = - 6\) hoặc
\(x = - 3\) hoặc \(x = 4\)
Như vậy, phương trình đã cho có các nghiệm là \(x = - 3;\,\,x = 4.\)
Vậy tập hợp tất cả các nghiệm của phương trình đã cho là \(\left\{ { - 3;\,\,4} \right\}.\) Chọn A.
Lời giải
Ta có \(\left\{ \begin{array}{l}k \in \mathbb{Z}\\ - 2 \le k \le 2\end{array} \right. \Rightarrow k = \left\{ { - 2\,;\, - 1\,;\,0\,;\,1\,;\,2} \right\} \Rightarrow {k^2} = \left\{ {0\,;\,1\,;\,4} \right\}\).
Do đó \(A = \left\{ {0;1;4} \right\}\). Chọn D.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.