B. TỰ LUẬN
Cho phương trình \({x^2} + 2x + m - 1 = 0\) \((1)\) (với \(m\) là tham số).
1) Giải phương trình \((1)\) khi \(m = - 2\).
2) Tìm giá trị của \(m\) để phương trình \((1)\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 3.\)
B. TỰ LUẬN
Cho phương trình \({x^2} + 2x + m - 1 = 0\) \((1)\) (với \(m\) là tham số).
1) Giải phương trình \((1)\) khi \(m = - 2\).
2) Tìm giá trị của \(m\) để phương trình \((1)\) có hai nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \(x_1^2 + x_2^2 = 3.\)
Câu hỏi trong đề: Bộ 3 đề KSCL đầu năm Toán 10 có đáp án !!
Quảng cáo
Trả lời:

1) Khi \(m = - 2,\) phương trình (1) trở thành \({x^2} + 2x - 3 = 0.\)
Phương trình trên có \(a = 1,\,\,b = 2,\,\,c = - 3\) nên \(a + b + c = 1 + 2 + \left( { - 3} \right) = 0.\)
Như vậy, phương trình này có hai nghiệm là \({x_1} = 1;\,\,{x_2} = - 3.\)
Vậy khi \(m = - 2,\) phương trình (1) có hai nghiệm phân biệt \({x_1} = 1;\,\,{x_2} = - 3.\)
2) Xét phương trình \({x^2} + 2x + m - 1 = 0\,\,\,(1)\).
Có \(\Delta ' = {1^2} - 1 \cdot \left( {m - 1} \right) = 1 - m + 1 = 2 - m.\)
Để phương trình \((1)\) có hai nghiệm phân biệt \({x_1},{x_2}\) thì \(\Delta ' > 0,\) tức là \(2 - m > 0,\) hay \(m < 2.\)
Khi đó, theo định lí Viète, ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = - 2\\{x_1}{x_2} = m - 1.\end{array} \right.\)
Ta có: \(x_1^2 + x_2^2 = 3\)
\(x_1^2 + 2{x_1}{x_2} + x_2^2 - 2{x_1}{x_2} = 3\)
\({\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = 3\)
\({\left( { - 2} \right)^2} - 2\left( {m - 1} \right) = 3\)
\(4 - 2m + 2 = 3\)
\( - 2m = - 3\)
\(m = \frac{3}{2}\) (thỏa mãn \(m < 2).\)
Vậy \(m = \frac{3}{2}.\)
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(x\) là số tờ tiền mệnh giá 5 000 đồng Bắc có \(\left( {x > 0} \right).\)
Khi đó số tờ tiền mệnh giá 2 000 đồng Bắc có là \(15 - x\) (tờ).
Tổng số tiền Bắc có là: \(5\,\,000x + 2\,\,000\left( {15 - x} \right)\) (đồng).
Theo bài, Bắc có số tiền không vượt quá 60 000 đồng nên ta có bất phương trình:
\(5\,\,000x + 2\,\,000\left( {15 - x} \right) \le 60\,\,000\)
\[5\,\,000x + 30\,\,000 - 2\,\,000x \le 60\,\,000\]
\[3\,\,000x \le 30\,\,000\]
\(x \le 10.\)
Vậy Bắc có nhiều nhất 10 tờ tiền mệnh giá 5 000 đồng.
Đáp án: 10.
Câu 2
A. \[3\].
B. \[2\].
C. \[4\].
D. \[1\].
Lời giải
Ta có các mệnh đề là
b) Số \[15\] là số nguyên tố.
c) Tổng các góc của một tam giác là \(180^\circ \).
d) \[3\]là số nguyên dương.
Vậy có 3 mệnh đề. Chọn A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(30^\circ .\)
B. \[45^\circ .\]
C. \[90^\circ .\]
D. \(135^\circ .\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Thống kê điểm kiểm tra môn Toán của lớp 10A, ta thu được bảng số liệu sau:
Điểm | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Số học sinh | 2 | 3 | 4 | 8 | 13 | 8 | 7 |
Theo bảng số liệu trên, lớp 10A có bao nhiêu bạn đạt điểm 10?
A. 8.
B. 13.
C. 7.
D. 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.