Câu hỏi:

19/08/2025 279 Lưu

Một vật dao động điều hòa theo phương trình x = 10cos\(\left( {3{\rm{\pi t}} - \frac{{\rm{\pi }}}{3}} \right)\) (cm). Kể từ t = 0, thời điểm vật qua vị trí x = 8 cm ℓần thứ 16 bằng bao nhiêu giây?

 

Đáp án

 

 

 

 

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

4

,

8

5

Hướng dẫn giải

\[T = \frac{{2\pi }}{\omega } = \frac{2}{3}s\]

Tại t = 0: φ =  

Cứ 1T, vật qua x = 8 cm 2 ℓần; tách: 16 = 7.2 + 2 Þ sau 7T, vật đi qua x = 8 cm 14 ℓần.

Diễn biến dao động 2 ℓần cuối:

Một vật dao động điều hòa theo phương trình x = 10cos(3pi t-pi/3). kể từ t=0 (ảnh 1)

Với ∆t = \(\frac{{{{\cos }^{ - 1}}\left( {\frac{8}{{10}}} \right)}}{{2\pi }}T\)

→ thời điểm cần tìm là \[t' = 7T + \frac{T}{6} + \frac{{{{\cos }^{ - 1}}\left( {\frac{8}{{10}}} \right)}}{{2\pi }}T \approx {\rm{ 4,85 s}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Nội dung

Đúng

Sai

a. Tần số dao động của vật là 1,5 Hz

 

S

b. Chiều dài quỹ đạo dao động của vật là 4 cm.

Đ

 

c. Ở thời điểm \[\frac{{11}}{6}{\rm{s}}\] vật chuyển động qua vị trí x = -2 theo chiều âm.

 

S

d. Tốc độ trung bình khi vật đi được quãng đường 13 cm là 19,5 s.

Đ

 

 

Hướng dẫn giải

a. Dựa vào đồ thị xác định được: \[T = 2s = > f = \frac{1}{T} = 0,5Hz\]

b. A = 2cm => Chiều dài quỹ đạo dao động của vật là L = 2A= 4 cm.

c. Ta có: \[\omega = 2\pi f = \pi {\rm{ rad/s}}\]

\[t = 0:\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{v > 0}\end{array}} \right. = > \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = \frac{x}{A}}\\{v > 0}\end{array}} \right. = > \left\{ {\begin{array}{*{20}{c}}{ \pm \frac{\pi }{2}}\\{v > 0}\end{array}} \right. = > \varphi = \frac{{ - \pi }}{2}rad\]

=> \[\begin{array}{l}x = 2\cos \left( {\pi t - \frac{\pi }{2}} \right)cm\\t = \frac{{11}}{6}s = > x = 2\cos \left( {\pi .\frac{{11}}{6} - \frac{\pi }{2}} \right) = - 1cm\end{array}\]

\[t = \frac{{11}}{6}s = \frac{{3T}}{4} + \frac{T}{6}\]. Dựa vào vòng tròn lượng giác=> v>0

Ở thời điểm \[\frac{{11}}{6}{\rm{s}}\] vật chuyển động qua vị trí x = -1 theo chiều dương.

d. \[{S_T} = 4A = 8cm = > S = 13cm = 4A + 2A + \frac{A}{2}\]

 

\[\begin{array}{l}t = T + \frac{T}{2} + \frac{T}{{12}} = \frac{{19}}{{12}}s\\ = > v = \frac{S}{t} = 8,21{\rm{cm/s}}\end{array}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP