Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 10\) và hai điểm \[A\left( {1;2; - 4} \right)\] và \[B\left( {1;2;14} \right)\]. Khi đó:
d) Điểm \[M\] thay đổi trên mặt cầu \[\left( S \right)\], giá trị nhỏ nhất của \[MA + 2MB\] bằng \[3\sqrt {82} \].
Trong không gian \[Oxyz\], cho mặt cầu \(\left( S \right):{\left( {x - 1} \right)^2} + {y^2} + {\left( {z - 2} \right)^2} = 10\) và hai điểm \[A\left( {1;2; - 4} \right)\] và \[B\left( {1;2;14} \right)\]. Khi đó:
d) Điểm \[M\] thay đổi trên mặt cầu \[\left( S \right)\], giá trị nhỏ nhất của \[MA + 2MB\] bằng \[3\sqrt {82} \].
Quảng cáo
Trả lời:

d) Mặt cầu \[\left( S \right)\] có tâm \[I\left( {1;0;2} \right)\] và bán kính \[R = \sqrt {10} \].
Ta có \[IA = 2\sqrt {10} = 2R\] nên tồn tại điểm \[C\] cố định sao cho \[MA = 2MC;\forall M \in \left( S \right){\rm{ }}\left( 1 \right)\]
Thật vậy, gọi \[C\left( {a;b;c} \right)\]. Khi đó, với mọi điểm \[M\left( {x;y;z} \right) \in \left( S \right) \Leftrightarrow {x^2} + {y^2} + {z^2} = 2x + 4z + 5\], ta có: \[M{A^2} = {\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 4} \right)^2} = {x^2} + {y^2} + {z^2} - 2{\rm{x}} - 4y + 8{\rm{z}} + 21\]
\[ = 2{\rm{x}} + 4{\rm{z}} + 5 - 2{\rm{x}} - 4y + 8{\rm{x}} + 21 = - 4y + 12{\rm{z}} + 26\]
\[M{C^2} = {\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {x^2} + {y^2} + {z^2} - 2a{\rm{x}} - 2by - 2c{\rm{z}} + {a^2} + {b^2} + {c^2}\]
\[ = 2{\rm{x}} + 4{\rm{z}} + 5 - 2a{\rm{x}} - 2by - 2c{\rm{x}} + {a^2} + {b^2} + {c^2} = \left( {2 - 2a} \right)x - 2by + \left( {4 - 2c} \right){\rm{z}} + + {a^2} + {b^2} + {c^2} + 5\]
Nên \[\left( 1 \right) \Leftrightarrow M{A^2} = 4M{C^2};\forall M \in \left( S \right)\]
\[ \Leftrightarrow - 4y + 12{\rm{z}} + 26 = 4\left[ {\left( {2 - 2{\rm{a}}} \right)x - 2by + \left( {4 - 2c} \right)z + {a^2} + {b^2} + {c^2} + 5} \right];\forall x;y;z \in \mathbb{R}\]
\[ \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{4\left( {2 - 2{\rm{a}}} \right) = 0}\\{4\left( { - 2b} \right) = - 4}\\{4\left( {4 - 2c} \right) = 12}\\{4\left( {{a^2} + {b^2} + {c^2} + 5} \right) = 26}\end{array}} \right.\]\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b = \frac{1}{2}}\\{c = \frac{1}{2}}\end{array}} \right.\)\( \Rightarrow C\left( {1;\frac{1}{2};\frac{1}{2}} \right)\)
Lúc này, \(IC = \frac{{\sqrt {10} }}{2} < R < IB = 2\sqrt {37} \) nên \(C\) nằm trong \(\left( S \right)\) còn \(B\) nằm ngoài \(\left( S \right)\) và
\(MA + 2MB = 2MC + 2MB = 2\left( {MC + MB} \right) \ge 2BC = 3\sqrt {82} \).
Đẳng thức xảy ra \( \Leftrightarrow M\) là giao điểm của đoạn \(BC\) và mặt cầu \(\left( S \right)\).
Vậy \(\min \left( {MA + 2MB} \right) = 3\sqrt {82} \). Do đó câu này đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
b) Chọn Sai
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.