Một hộp có 60 viên bi màu xanh và 40 viên bi màu đỏ; các viên bi có kích thước và khối lượng như nhau. Sau khi thống kê, người ta thấy: có \(50\% \) số viên bi màu xanh có dán nhãn và \(75\% \) số viên bi màu đỏ có dán nhãn; những viên bi còn lại không dán nhãn.
a) Chọn số thích hợp cho ô có dấu ? trong Bảng 3 (đơn vị: viên bi).
b) Lấy ra ngẫu nhiên một viên bi trong hộp. Sử dụng công thức xác suất toàn phần, tính xác suất để viên bi được lấy ra có dán nhãn.
Một hộp có 60 viên bi màu xanh và 40 viên bi màu đỏ; các viên bi có kích thước và khối lượng như nhau. Sau khi thống kê, người ta thấy: có \(50\% \) số viên bi màu xanh có dán nhãn và \(75\% \) số viên bi màu đỏ có dán nhãn; những viên bi còn lại không dán nhãn.
a) Chọn số thích hợp cho ô có dấu ? trong Bảng 3 (đơn vị: viên bi).

b) Lấy ra ngẫu nhiên một viên bi trong hộp. Sử dụng công thức xác suất toàn phần, tính xác suất để viên bi được lấy ra có dán nhãn.
Quảng cáo
Trả lời:

a) Số viên bi màu đỏ có dán nhãn là: \(75\% .40 = 30\) (viên bi).
Số viên bi màu xanh có dán nhãn là: \(50\% .60 = 30\) (viên bi).

b) Xét hai biến cố sau:
A: "Viên bi được chọn ra có dán nhãn";
\(B\) : "Viên bi được chọn ra có màu đỏ".
Khi đó, ta có:
\({\rm{P}}(B) = \frac{{40}}{{100}} = \frac{2}{5};{\rm{ P}}(\bar B) = 1 - {\rm{P}}(B) = 1 - \frac{2}{5} = \frac{3}{5};{\rm{P}}(A\mid B) = \frac{{30}}{{40}} = \frac{3}{4};{\rm{ P}}(A\mid \bar B) = \frac{{30}}{{60}} = \frac{1}{2}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{3}{5}.\)
Vậy xác suất để viên bi được lấy ra có dán nhãn bằng \(\frac{3}{5}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)
- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).
- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).
- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.
- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).
- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)
Lời giải
Ta có \(P(B) = 0,6\). Suy ra \(P(\bar B) = 1 - P(B) = 1 - 0,6 = 0,4\).
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,6 \cdot 0,7 + 0,4 \cdot 0,4 = 0,58.{\rm{ }}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.