Trong trò chời hái hoa có thưởng của lốp 12 A , cô giáo treo 10 bông hoa trên cành cây, trong đó có 5 bông hoa chứa phiếu có thưởng. Bạn Bình hái bông hoa đầu tiên, sau đó bạn An hái bông hoa thứ hai.
a) Vẽ sơ đồ hình cây biểu thị tình huống trên.
b) Từ đó, tính xác suất bạn An hái được bông hoa chứa phiếu có thưởng.
Trong trò chời hái hoa có thưởng của lốp 12 A , cô giáo treo 10 bông hoa trên cành cây, trong đó có 5 bông hoa chứa phiếu có thưởng. Bạn Bình hái bông hoa đầu tiên, sau đó bạn An hái bông hoa thứ hai.
a) Vẽ sơ đồ hình cây biểu thị tình huống trên.
b) Từ đó, tính xác suất bạn An hái được bông hoa chứa phiếu có thưởng.
Quảng cáo
Trả lời:
Xét hai biến cố: \(A\) : "Bông hoa bạn An hái được chứa phiếu có thưởng";
\(B\) : "Bông hoa bạn Bình hái được chứa phiếu có thưởng".
Khi đó, ta có:
\({\rm{P}}(B) = \frac{5}{{10}} = \frac{1}{2},\quad {\rm{P}}(\bar B) = 1 - {\rm{P}}(B) = 1 - \frac{1}{2} = \frac{1}{2},{\rm{P}}(A\mid B) = \frac{4}{9},\quad {\rm{P}}(A\mid \bar B) = \frac{5}{9}.\)
a) Sơ đồ hình cây biểu thị tình huống đã cho là:

b) Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{1}{2} \cdot \frac{4}{9} + \frac{1}{2} \cdot \frac{5}{9} = \frac{1}{2}{\rm{. }}\)
Vậy xác suất bạn An hái được bông hoa chứa phiếu có thưởng bằng \(\frac{1}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)
- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).
- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).
- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.
- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).
- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì
\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)
Lời giải
a) Với A là biến cố "Trời mưa" và B là biến cố "Bán hết vé".
Theo bài ra ta có: \({\rm{P}}({\rm{A}}) = 0,75\). Suy ra \({\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,75 = 0,25\).
Lại có:
+) nếu trời mưa thì xác suất bán hết vé là 0,4 . Vậy \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,4\).
+) nếu trời không mưa thì xác suất bán hết vé là 0,9 . Vậy \(P(B\mid \bar A) = 0,9\).
b) Nhà tổ chức quan tâm tới \({\rm{P}}({\rm{B}})\) nhất.
c) Gọi A là biến cố: "Trời mưa" và B là biến cố: "Bán hết vé".
Từ HÐ 1a, ta có: \({\rm{P}}({\rm{A}}) = 0,75;{\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 0,25\);
\({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,4;P(B\mid \bar A) = 0,9.{\rm{ }}\)
Thay vào công thức xác suất toàn phần ta được
\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + {\rm{P}}(\bar A) \cdot P(B\mid \bar A) = 0,75 \cdot 0,4 + 0,25 \cdot 0,9 = 0,525.{\rm{ }}\)
Vậy xác suất để nhà tổ chức sự kiện bán hết vé là 0,525 .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
