Câu hỏi:

23/08/2025 7 Lưu

Theo một số liệu thống kê, năm 2004 ở Canada có \(65\% \) nam giởi là thừa cân và \(53,4\% \) nữ giởi là thừa cân. Nam giởi và nữ giới ở Canada đều chiếm \(50\% \) dân số cả nước (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics - Understanding why and how, Springer, 2005). Hỏi rằng, trong năm 2004, xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hai biến cố sau:

\(A\) : "Người được chọn ra là người thừa cân";

\(B\) : "Người được chọn ra là nam giới" (biến cố \(\bar B\) : "Người được chọn ra là nữ giới").

Từ giả thiết ta có:

\({\rm{P}}(B) = {\rm{P}}(\bar B) = 50\%  = 0,5;{\rm{P}}(A\mid B) = 65\%  = 0,65;{\rm{P}}(A\mid \bar B) = 53,4\%  = 0,534.\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,5 \cdot 0,65 + 0,5 \cdot 0,534 = 0,592.\)

Vậy xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng 0,592 . Nói cách khác, tỉ lệ người Canada thừa cân là \(59,2\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Số viên bi màu đỏ có dán nhãn là: \(75\% .40 = 30\) (viên bi).

Số viên bi màu xanh có dán nhãn là: \(50\% .60 = 30\) (viên bi).

Một hộp có 60 viên bi màu xanh và 40 viên bi màu đỏ; các viên bi có kích thước và khối lượng như nhau (ảnh 2)

b) Xét hai biến cố sau:

A: "Viên bi được chọn ra có dán nhãn";

\(B\) : "Viên bi được chọn ra có màu đỏ".

Khi đó, ta có:

\({\rm{P}}(B) = \frac{{40}}{{100}} = \frac{2}{5};{\rm{ P}}(\bar B) = 1 - {\rm{P}}(B) = 1 - \frac{2}{5} = \frac{3}{5};{\rm{P}}(A\mid B) = \frac{{30}}{{40}} = \frac{3}{4};{\rm{ P}}(A\mid \bar B) = \frac{{30}}{{60}} = \frac{1}{2}.\)

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{3}{5}.\)

Vậy xác suất để viên bi được lấy ra có dán nhãn bằng \(\frac{3}{5}\).

Lời giải

a) Kí hiệu \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".

Ta vẽ sơ đồ hình cây như sau:

Ông An hằng ngày đi làm bằng xe máy hoă̆c xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suá́t để hôm sau ông đi làm bằng xe máy là 0,4 (ảnh 1)

Trên nhánh cây OA và \(O\bar A\) tương ứng ghi \(P(A)\) và \(P(\bar A)\);

Trên nhánh cây AB và \(A\bar B\) tương ứng ghi \(P(B\mid A)\) và \(P(\bar B\mid A)\);

Trên nhánh cây \(\bar AB\) và \(\overline {AB} \) tương ứng ghi \(P(B\mid \bar A)\) và \(P(\bar B\mid \bar A)\).

Có hai nhánh cây đi tới \(B\) là OAB và \(O\bar AB\). Vậy: \(P(B) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)

b) Kí hiệu A là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; B là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".

Khi đó, biến cố "Thứ Tư, ông An đi làm bằng xe buýt" chính là \(\bar B\).

Ta có sơ đồ hình cây mô tả xác suất của biến cố như sau:

Ông An hằng ngày đi làm bằng xe máy hoă̆c xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suá́t để hôm sau ông đi làm bằng xe máy là 0,4 (ảnh 2)

Hai nhánh cây đi tới \(\bar B\) là \(OA\bar B\) và \(O\bar A\bar B\).

Như vậy \(P(\bar B) = 0,4 \cdot 0,7 + 0,6 \cdot 0,6 = 0,64\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP