Câu hỏi:

23/08/2025 173 Lưu

Theo một số liệu thống kê, năm 2004 ở Canada có \(65\% \) nam giởi là thừa cân và \(53,4\% \) nữ giởi là thừa cân. Nam giởi và nữ giới ở Canada đều chiếm \(50\% \) dân số cả nước (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics - Understanding why and how, Springer, 2005). Hỏi rằng, trong năm 2004, xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét hai biến cố sau:

\(A\) : "Người được chọn ra là người thừa cân";

\(B\) : "Người được chọn ra là nam giới" (biến cố \(\bar B\) : "Người được chọn ra là nữ giới").

Từ giả thiết ta có:

\({\rm{P}}(B) = {\rm{P}}(\bar B) = 50\%  = 0,5;{\rm{P}}(A\mid B) = 65\%  = 0,65;{\rm{P}}(A\mid \bar B) = 53,4\%  = 0,534.\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,5 \cdot 0,65 + 0,5 \cdot 0,534 = 0,592.\)

Vậy xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng 0,592 . Nói cách khác, tỉ lệ người Canada thừa cân là \(59,2\% \).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)

- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).

- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).

- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.

- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).

- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)

Lời giải

a) Kí hiệu \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".

Ta vẽ sơ đồ hình cây như sau:

Ông An hằng ngày đi làm bằng xe máy hoă̆c xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suá́t để hôm sau ông đi làm bằng xe máy là 0,4 (ảnh 1)

Trên nhánh cây OA và \(O\bar A\) tương ứng ghi \(P(A)\) và \(P(\bar A)\);

Trên nhánh cây AB và \(A\bar B\) tương ứng ghi \(P(B\mid A)\) và \(P(\bar B\mid A)\);

Trên nhánh cây \(\bar AB\) và \(\overline {AB} \) tương ứng ghi \(P(B\mid \bar A)\) và \(P(\bar B\mid \bar A)\).

Có hai nhánh cây đi tới \(B\) là OAB và \(O\bar AB\). Vậy: \(P(B) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)

b) Kí hiệu A là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; B là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".

Khi đó, biến cố "Thứ Tư, ông An đi làm bằng xe buýt" chính là \(\bar B\).

Ta có sơ đồ hình cây mô tả xác suất của biến cố như sau:

Ông An hằng ngày đi làm bằng xe máy hoă̆c xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suá́t để hôm sau ông đi làm bằng xe máy là 0,4 (ảnh 2)

Hai nhánh cây đi tới \(\bar B\) là \(OA\bar B\) và \(O\bar A\bar B\).

Như vậy \(P(\bar B) = 0,4 \cdot 0,7 + 0,6 \cdot 0,6 = 0,64\).