Theo một số liệu thống kê, năm 2004 ở Canada có \(65\% \) nam giởi là thừa cân và \(53,4\% \) nữ giởi là thừa cân. Nam giởi và nữ giới ở Canada đều chiếm \(50\% \) dân số cả nước (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics - Understanding why and how, Springer, 2005). Hỏi rằng, trong năm 2004, xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng bao nhiêu?
Theo một số liệu thống kê, năm 2004 ở Canada có \(65\% \) nam giởi là thừa cân và \(53,4\% \) nữ giởi là thừa cân. Nam giởi và nữ giới ở Canada đều chiếm \(50\% \) dân số cả nước (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics - Understanding why and how, Springer, 2005). Hỏi rằng, trong năm 2004, xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng bao nhiêu?
Quảng cáo
Trả lời:

Xét hai biến cố sau:
\(A\) : "Người được chọn ra là người thừa cân";
\(B\) : "Người được chọn ra là nam giới" (biến cố \(\bar B\) : "Người được chọn ra là nữ giới").
Từ giả thiết ta có:
\({\rm{P}}(B) = {\rm{P}}(\bar B) = 50\% = 0,5;{\rm{P}}(A\mid B) = 65\% = 0,65;{\rm{P}}(A\mid \bar B) = 53,4\% = 0,534.\)
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,5 \cdot 0,65 + 0,5 \cdot 0,534 = 0,592.\)
Vậy xác suất để một người Canada được chọn ngẫu nhiên là người thừa cân bằng 0,592 . Nói cách khác, tỉ lệ người Canada thừa cân là \(59,2\% \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Số viên bi màu đỏ có dán nhãn là: \(75\% .40 = 30\) (viên bi).
Số viên bi màu xanh có dán nhãn là: \(50\% .60 = 30\) (viên bi).

b) Xét hai biến cố sau:
A: "Viên bi được chọn ra có dán nhãn";
\(B\) : "Viên bi được chọn ra có màu đỏ".
Khi đó, ta có:
\({\rm{P}}(B) = \frac{{40}}{{100}} = \frac{2}{5};{\rm{ P}}(\bar B) = 1 - {\rm{P}}(B) = 1 - \frac{2}{5} = \frac{3}{5};{\rm{P}}(A\mid B) = \frac{{30}}{{40}} = \frac{3}{4};{\rm{ P}}(A\mid \bar B) = \frac{{30}}{{60}} = \frac{1}{2}.\)
Áp dụng công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{2}{5} \cdot \frac{3}{4} + \frac{3}{5} \cdot \frac{1}{2} = \frac{3}{5}.\)
Vậy xác suất để viên bi được lấy ra có dán nhãn bằng \(\frac{3}{5}\).
Lời giải
a) Kí hiệu \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".
Ta vẽ sơ đồ hình cây như sau:

Trên nhánh cây OA và \(O\bar A\) tương ứng ghi \(P(A)\) và \(P(\bar A)\);
Trên nhánh cây AB và \(A\bar B\) tương ứng ghi \(P(B\mid A)\) và \(P(\bar B\mid A)\);
Trên nhánh cây \(\bar AB\) và \(\overline {AB} \) tương ứng ghi \(P(B\mid \bar A)\) và \(P(\bar B\mid \bar A)\).
Có hai nhánh cây đi tới \(B\) là OAB và \(O\bar AB\). Vậy: \(P(B) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)
b) Kí hiệu A là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; B là biến cố: "Thứ Tư, ông An đi làm bằng xe máy".
Khi đó, biến cố "Thứ Tư, ông An đi làm bằng xe buýt" chính là \(\bar B\).
Ta có sơ đồ hình cây mô tả xác suất của biến cố như sau:

Hai nhánh cây đi tới \(\bar B\) là \(OA\bar B\) và \(O\bar A\bar B\).
Như vậy \(P(\bar B) = 0,4 \cdot 0,7 + 0,6 \cdot 0,6 = 0,64\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.