Câu hỏi:

23/08/2025 6 Lưu

Số khán giả đến xem buổi biểu diễn ca nhạc ngoài trời phụ thuộc vào thời tiết. Giả sử, nếu trời không mưa thì xác suất để bán hết vé là 0,9 ; còn nếu trời mưa thì xác suất để bán hết vé chỉ là 0,4 . Dự báo thời tiết cho thấy xác suất để trời mưa vào buổi biểu diễn là 0,75 . Nhà tổ chức sự kiện quan tâm đến xác suất để bán được hết vé là bao nhiêu.

Gọi A là biến cố "Trời mưa" và B là biến cố "Bán hết vé" trong tình huống mở đằu.

a) Tính \({\rm{P}}({\rm{A}}),P(\bar A),{\rm{P}}({\rm{B}}\mid {\rm{A}}),P(B\mid \bar A)\).

b) Trong hai xác suất \({\rm{P}}({\rm{A}})\) và \({\rm{P}}({\rm{B}})\), nhà tổ chức sự kiện quan tâm đến xác suất nào nhất?

c) Tính xác suất để nhà tổ chức sự kiện bán hết vé.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Với A là biến cố "Trời mưa" và B là biến cố "Bán hết vé".

Theo bài ra ta có: \({\rm{P}}({\rm{A}}) = 0,75\). Suy ra \({\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,75 = 0,25\).

Lại có:

+) nếu trời mưa thì xác suất bán hết vé là 0,4 . Vậy \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,4\).

+) nếu trời không mưa thì xác suất bán hết vé là 0,9 . Vậy \(P(B\mid \bar A) = 0,9\).

b) Nhà tổ chức quan tâm tới \({\rm{P}}({\rm{B}})\) nhất.

c) Gọi A là biến cố: "Trời mưa" và B là biến cố: "Bán hết vé".

Từ HÐ 1a, ta có: \({\rm{P}}({\rm{A}}) = 0,75;{\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 0,25\);

\({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,4;P(B\mid \bar A) = 0,9.{\rm{ }}\)

Thay vào công thức xác suất toàn phần ta được

\({\rm{P}}({\rm{B}}) = {\rm{P}}({\rm{A}}) \cdot {\rm{P}}({\rm{B}}\mid {\rm{A}}) + {\rm{P}}(\bar A) \cdot P(B\mid \bar A) = 0,75 \cdot 0,4 + 0,25 \cdot 0,9 = 0,525.{\rm{ }}\)

Vậy xác suất để nhà tổ chức sự kiện bán hết vé là 0,525 .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Thứ Ba, ông An đi làm bằng xe máy"; \(B\) là biến cố: "Thứ Tư, ông An đi làm bằng xe máy". Ta cần tính \(P(B)\). Theo công thức xác suất toàn phần, ta có:

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A).\)

- Tính \(P(A)\) : Vi thứ Hai, ông An đi làm bằng xe buýt nên xác suất để thứ Ba (hôm sau), ông đi làm bằng xe máy là 0,4 . Vậy \(P(A) = 0,4\).

- Tính \(P(\bar A)\) : Ta có \(P(\bar A) = 1 - 0,4 = 0,6\).

- Tính \(P(B\mid A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy.

- Theo giả thiết, nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7 và đi làm bằng xe máy là \(1 - 0,7 = 0,3\). Do đó, nếu thứ Ba , ông An đi làm bằng xe máy thì xác suất để thứ Tư, ông đi làm bằng xe máy là 0,3 . Vậy \(P(B\mid A) = 0,3\).

- Tính \(P(B\mid \bar A)\) : Đây là xác suất để thứ Tư, ông An đi làm bằng xe máy nếu thứ Ba ông An đi làm bằng xe buýt. Theo giả thiết, né́u hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4 . Do đó nếu thứ Ba, ông An đi làm bằng xe buýt thì

\(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,4 \cdot 0,3 + 0,6 \cdot 0,4 = 0,36.\)

Lời giải

Ta có \(P(B) = 0,6\). Suy ra \(P(\bar B) = 1 - P(B) = 1 - 0,6 = 0,4\).

Áp dụng công thức xác suất toàn phần, ta có:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,6 \cdot 0,7 + 0,4 \cdot 0,4 = 0,58.{\rm{ }}\)