Câu hỏi:

23/08/2025 175 Lưu

Một nhà máy có hai phân xường I và II. Phân xường I sản xuất \(40\% \) số sản phẩm và phân xưởng II sản xuất \(60\% \) số sản phẩm. Tỉ lệ sản phẩm bị lỗi của phân xưởng I là \(2\% \) và của phân xưởng II là \(1\% \). Kiểm tra ngẫu nhiên 1 sản phẩm của nhà máy.

a) Tính xác suất để sản phẩm đó bị lỗi.

b) Biết rằng sản phẩm được kiểm tra bị lỗi. Hỏi xác suất sản phẩm đó do phân xưởng nào sản xuất cao hơn?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Gọi \(A\) là biến cố "Sản phẩm được kiểm tra bị lỗi" và \(B\) là biến cố "Sản phẩm được kiểm tra do phân xưởng I sản xuất".

Do phân xưởng I sản xuất \(40\% \) số sản phẩm và phân xưởng II sản xuất \(60\% \) số sản phẩm nên

\(P(B) = 0,4{\rm{ và  }}P(\bar B) = 1 - 0,4 = 0,6.{\rm{ }}\)

Do tỉ lệ sản phẩm bị lỗi của phân xưởng I là \(2\% \) và của phân xưởng II là \(1\% \) nên

\(P(A\mid B) = 0,02{\rm{ và  }}P(A\mid \bar B) = 0,01.{\rm{ }}\)

Xác suất để sản phẩm được kiểm tra bị lỗi là

\(P(A) = P(B)P(A\mid B) + P(\bar B)P(A\mid \bar B) = 0,4.0,02 + 0,6.0,01 = 0,014.\)

b) Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sàn xuất là

\(P(B\mid A) = \frac{{P(B)P(A\mid B)}}{{P(A)}} = \frac{{0,4 \cdot 0,02}}{{0,014}} = \frac{4}{7}.\)

Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng II sản xuất là

\(P(\bar B\mid A) = 1 - P(B\mid A) = \frac{3}{7}.\)

Vậy nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất cao hơn xác suất sản phẩm đó do phân xưởng II sản xuất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".

a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là

\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)

b) Ta cần tính \(P(\bar A\mid \bar B)\).

Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)

\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).

Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)

\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y

\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)

Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)

Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).

Lời giải

a) Xét hai biến cố:

A: "Linh kiện được lấy ra từ lô hàng là linh kiện tốt”;

B: "Linh kiện được lấy ra từ lô hàng do nhà máy I sản xuất".

Vi lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy số I và 120 sản phẩm của nhà máy số II nên \(P(B) = \frac{{80}}{{80 + 120}} = 0,4\), suy ra \(P(\bar B) = 1 - 0,4 = 0,6\).

Vì tỉ lệ phế phẩm của các nhà máy I, II lần lượt là: \(4\% ;3\% \) nên tỉ lệ thành phẩm (linh kiện tốt) của các nhà máy I, II lần lượt là \(96\% ;97\% \).

Do đó \({\rm{P}}({\rm{A}}\mid {\rm{B}}) = 0,96\) và \({\rm{P}}({\rm{A}}\mid \bar B) = 0,97\).

Áp dụng công thức xác suất toàn phần, ta có xác suất để linh kiện được lấy ra là linh kiện tốt là:

\({\rm{P}}({\rm{A}}) = {\rm{P}}({\rm{B}}) \cdot {\rm{P}}({\rm{A}}\mid {\rm{B}}) + {\rm{P}}(\bar B) \cdot {\rm{P}}({\rm{A}}\mid \bar B) = 0,4 \cdot 0,96 + 0,6 \cdot 0,97 = 0,966.\)

b) Xét biến cố C: "Linh kiện được lấy ra từ lô hàng là linh kiện phế phẩm".

Khi đó, ta có \({\rm{C}} = \bar A\). Suy ra \({\rm{P}}({\rm{C}}) = {\rm{P}}(\bar A) = 1 - {\rm{P}}({\rm{A}}) = 1 - 0,966 = 0,034\).

Theo bài ra ta có: \(P(C\mid B) = 4\%  = 0,04\).

Do đó, nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy I sản xuất là: \({\rm{P}}({\rm{B}}\mid {\rm{C}}) = \frac{{P(B) \cdot P(C\mid B)}}{{P(C)}} = \frac{{0,4 \cdot 0,04}}{{0,034}} = \frac{8}{{17}}\).

Nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất sản phẩm đó do nhà máy II sản xuất là: \({\rm{P}}(\bar B\mid {\rm{C}}) = 1 - {\rm{P}}({\rm{B}}\mid {\rm{C}}) = 1 - \frac{8}{{17}} = \frac{9}{{17}}\).

Vi \(\frac{9}{{17}} > \frac{8}{{17}}\) nên nếu linh kiện được lấy ra là linh kiện phế phẩm thì xác suất linh kiện đó do nhà máy II sản xuất là cao hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP