Một nhà máy có hai phân xường I và II. Phân xường I sản xuất \(40\% \) số sản phẩm và phân xưởng II sản xuất \(60\% \) số sản phẩm. Tỉ lệ sản phẩm bị lỗi của phân xưởng I là \(2\% \) và của phân xưởng II là \(1\% \). Kiểm tra ngẫu nhiên 1 sản phẩm của nhà máy.
a) Tính xác suất để sản phẩm đó bị lỗi.
b) Biết rằng sản phẩm được kiểm tra bị lỗi. Hỏi xác suất sản phẩm đó do phân xưởng nào sản xuất cao hơn?
Một nhà máy có hai phân xường I và II. Phân xường I sản xuất \(40\% \) số sản phẩm và phân xưởng II sản xuất \(60\% \) số sản phẩm. Tỉ lệ sản phẩm bị lỗi của phân xưởng I là \(2\% \) và của phân xưởng II là \(1\% \). Kiểm tra ngẫu nhiên 1 sản phẩm của nhà máy.
a) Tính xác suất để sản phẩm đó bị lỗi.
b) Biết rằng sản phẩm được kiểm tra bị lỗi. Hỏi xác suất sản phẩm đó do phân xưởng nào sản xuất cao hơn?
Quảng cáo
Trả lời:

a) Gọi \(A\) là biến cố "Sản phẩm được kiểm tra bị lỗi" và \(B\) là biến cố "Sản phẩm được kiểm tra do phân xưởng I sản xuất".
Do phân xưởng I sản xuất \(40\% \) số sản phẩm và phân xưởng II sản xuất \(60\% \) số sản phẩm nên
\(P(B) = 0,4{\rm{ và }}P(\bar B) = 1 - 0,4 = 0,6.{\rm{ }}\)
Do tỉ lệ sản phẩm bị lỗi của phân xưởng I là \(2\% \) và của phân xưởng II là \(1\% \) nên
\(P(A\mid B) = 0,02{\rm{ và }}P(A\mid \bar B) = 0,01.{\rm{ }}\)
Xác suất để sản phẩm được kiểm tra bị lỗi là
\(P(A) = P(B)P(A\mid B) + P(\bar B)P(A\mid \bar B) = 0,4.0,02 + 0,6.0,01 = 0,014.\)
b) Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sàn xuất là
\(P(B\mid A) = \frac{{P(B)P(A\mid B)}}{{P(A)}} = \frac{{0,4 \cdot 0,02}}{{0,014}} = \frac{4}{7}.\)
Nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng II sản xuất là
\(P(\bar B\mid A) = 1 - P(B\mid A) = \frac{3}{7}.\)
Vậy nếu sản phẩm được kiểm tra bị lỗi thì xác suất sản phẩm đó do phân xưởng I sản xuất cao hơn xác suất sản phẩm đó do phân xưởng II sản xuất.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
Gọi A là biến cố "Học sinh đó có tật khúc xạ" và B là biến cố "Học sinh đó là học sinh nam".
a) Ta có \(P(B\mid A) = \frac{{18}}{{12 + 18}} = \frac{3}{5}\).
b) Ta có \(P(A\mid B) = \frac{{18}}{{18 + 32}} = \frac{9}{{25}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.