Một thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo Y là \(0,5\% \). Bà N đi xét nghiệm bệnh hiểm nghèo \(Y\) và nhận được kết quả là âm tính. Biết rằng, nếu mắc bệnh hiểm nghèo \(Y\) thì với xác suất 0,94 xét nghiệm là dương tính; nếu không bị bệnh hiểm nghèo \(Y\) thì với xác suất 0,97 xét nghiệm là âm tính.
a) Trước khi tiến hành xét nghiệm xác suất không mắc bệnh hiểm nghèo Y của bà N là bao nhiêu?
b) Sau khi xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh hiểm nghèo Y của bà N là bao nhiêu?
Một thống kê cho thấy tỉ lệ dân số mắc bệnh hiểm nghèo Y là \(0,5\% \). Bà N đi xét nghiệm bệnh hiểm nghèo \(Y\) và nhận được kết quả là âm tính. Biết rằng, nếu mắc bệnh hiểm nghèo \(Y\) thì với xác suất 0,94 xét nghiệm là dương tính; nếu không bị bệnh hiểm nghèo \(Y\) thì với xác suất 0,97 xét nghiệm là âm tính.
a) Trước khi tiến hành xét nghiệm xác suất không mắc bệnh hiểm nghèo Y của bà N là bao nhiêu?
b) Sau khi xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh hiểm nghèo Y của bà N là bao nhiêu?
Quảng cáo
Trả lời:

Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".
a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là
\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)
b) Ta cần tính \(P(\bar A\mid \bar B)\).
Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)
\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).
Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)
\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y
\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)
Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)
Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét hai biến cố:
A: "Con bò được chọn ra không bị mắc bệnh bò điên".
B: "Con bò được chọn ra có phản ứng dương tính".
Vỉ tỉ lệ bò bị mắc bệnh bò điên ở Hà Lan là 13 con trên 1000000 con nên tỉ lệ bò mắc bệnh bò điên ở Hà Lan là \({\rm{P}}(\bar A) = 0,000013\).
Suy ra \(P(A) = 1 - 0,000013 = 0,999987\).
Trong số những con bò không bị mắc bệnh thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(10\% \), suy ra \({\rm{P}}({\rm{B}}\mid {\rm{A}}) = 0,1\).
Khi con bò mắc bệnh bò điên thì xác suất để có phản ứng dương tính trong xét nghiệm A là \(70\% \) nên \({\rm{P}}({\rm{B}}\mid \bar A) = 0,7\).
Ta thấy xác suất mắc bệnh bò điên của một con bò ở Hà Lan xét nghiệm có phản ứng dương tính với xét nghiệm A chính là \({\rm{P}}(\bar A\mid {\rm{B}})\). Áp dụng công thức Bayes, ta có:
\(P(\bar A\mid B) = \frac{{P(\bar A) \cdot P(B\mid \bar A)}}{{P(\bar A) \cdot P(B\mid \bar A) + P(A) \cdot P(B\mid A)}}\)
\( = \frac{{0,000013 \cdot 0,7}}{{0,000013 \cdot 0,7 + 0,999987 \cdot 0,1}} \approx 0,000091.\)
Vậy khi một con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A thì xác suất để nó bị mắc bệnh bò điên là 0,000091 .
Lời giải
Giả sử ta gặp một cư dân của xã, gọi \(A\) là biến cố "Người đó có hút thuốc lá" và \(B\) là biến cố "Người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp". Ta có sơ đồ hình cây sau:

a) Ta có: \(P(B) = P(A) \cdot P(B\mid A) + P(\bar A) \cdot P(B\mid \bar A) = 0,14 + 0,12 = 0,26\).
Vậy nếu ta gặp một cư dân của xã thì xác suất người đó thường xuyên gặp các vấn đề sức khoẻ về đường hô hấp là \(26\% \).
b) Theo công thức Bayes, ta có: \(P(A\mid B) = \frac{{P(A)P(B\mid A)}}{{P(B)}} = \frac{{0,14}}{{0,26}} \approx 0,54\).
Vậy nếu ta gặp một cư dân của xã thường xuyên gặp các vấn để sức khoẻ về đường hô hấp thì xác suất người đó có hút thuốc lá là khoảng \(54\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.