Một loại linh kiện do hai nhà máy I, II cùng sản xuất. Tî lệ phế phẩm của các nhà máy \({\rm{I}},{\rm{II}}\) lần lượt là: 0,04 ; 0,03. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy I và 120 sản phẩm của nhà máy II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
a) Tính xác suất để linh kiện được lấy ra không phải là phế phẩm.
b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Hỏi xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Một loại linh kiện do hai nhà máy I, II cùng sản xuất. Tî lệ phế phẩm của các nhà máy \({\rm{I}},{\rm{II}}\) lần lượt là: 0,04 ; 0,03. Trong một lô linh kiện để lẫn lộn 80 sản phẩm của nhà máy I và 120 sản phẩm của nhà máy II. Một khách hàng lấy ngẫu nhiên một linh kiện từ lô hàng đó.
a) Tính xác suất để linh kiện được lấy ra không phải là phế phẩm.
b) Giả sử linh kiện được lấy ra là linh kiện phế phẩm. Hỏi xác suất linh kiện đó do nhà máy nào sản xuất là cao hơn?
Quảng cáo
Trả lời:

a) Xét các biến cố:
A: "Linh kiện được lấy ra không phải là phế phẩm";
M: "Linh kiện được lấy ra do nhà máy I sån xuất";
\(\bar M\) : "Linh kiện được lấy ra do nhà máy II sản xuất".
Theo giả thiết, ta có:
\({\rm{P}}(M) = \frac{{80}}{{200}} = 0,4;{\rm{P}}(\bar M) = \frac{{120}}{{200}} = 0,6;{\rm{P}}(\bar A\mid M) = 0,04;{\rm{P}}(\bar A\mid \bar M) = 0,03;\)
\({\rm{P}}(A\mid M) = 1 - 0,04 = 0,96;{\rm{P}}(A\mid \bar M) = 1 - 0,03 = 0,97.\)
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(A) = {\rm{P}}(M) \cdot {\rm{P}}(A\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(A\mid \bar M) = 0,4 \cdot 0,96 + 0,6 \cdot 0,97 = 0,966.{\rm{ }}\)
Vậy xác suất để linh kiện được lấy ra không phải là phế phẩm là 0,966 .
b) Xác suất linh kiện phế phẩm được lấy ra do nhà máy I sản xuất là:
\({\rm{P}}(M\mid \bar A) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(\bar A\mid M)}}{{{\rm{P}}(\bar A)}} = \frac{{0,4 \cdot 0,04}}{{1 - 0,966}} = \frac{8}{{17}}.\)
Xác suất linh kiện phế phẩm được lấy ra do nhà máy II sản xuất là:
\({\rm{P}}(\bar M\mid \bar A) = \frac{{{\rm{P}}(\bar M) \cdot {\rm{P}}(\bar A\mid \bar M)}}{{{\rm{P}}(\bar A)}} = \frac{{0,6 \cdot 0,03}}{{1 - 0,966}} = \frac{9}{{17}}.\)
Vậy xác suất linh kiện phế phẩm được lấy ra do nhà máy II sản xuất là cao hơn.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi \(A\) là biến cố: "Bà \(N\) bị bệnh hiểm nghèo \(Y\) "; \(B\) là biến cố: "Xét nghiệm cho kết quả dương tính".
a) Trước khi tiến hành xét nghiệm, xác suất không mắc bệnh hiểm nghèo Y của bà N là
\(P(\bar A) = 1 - P(A) = 1 - 0,005 = 0,995.{\rm{ }}\)
b) Ta cần tính \(P(\bar A\mid \bar B)\).
Theo công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{P(\bar A) \cdot P(\bar B\mid \bar A)}}{{P(\bar A) \cdot P(\bar B\mid \bar A) + P(A) \cdot P(\bar B\mid A)}}.\)
\(P(\bar B\mid \bar A)\) là xác suất để bà \(N\) có xét nghiệm là âm tính nếu bà \(N\) không bị bệnh \(Y\).
Theo bài ra ta có: \(P(\bar B\mid \bar A) = 0,97{\rm{;}}\)
\(P(\bar B\mid A)\) là xác suất để bà N có xét nghiệm âm tính nếu bà N bị bệnh Y
\(P(\bar B\mid A) = 1 - 0,94 = 0,06.{\rm{ }}\)
Thay vào công thức Bayes ta có: \(P(\bar A\mid \bar B) = \frac{{0,995 \cdot 0,97}}{{0,995 \cdot 0,97 + 0,005 \cdot 0,06}} \approx 0,9997.\)
Như vậy, với xét nghiệm cho kết quả âm tính, xác suất không mắc bệnh Y của bà N tăng lên thành \(99,97\% \) (trước xét nghiệm là \(99,5\% \) ).
Lời giải
a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";
\(D\) : "Người được chọn ra có phản ứng dương tính".
Do tỉ lệ người mắc bệnh là \(0,1\% = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).
Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\% = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).
Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:
\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)
Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.