Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là \(0,1\% \). Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là \(5\% \) (tức là trong số những người không bị bệnh có \(5\% \) số người xét nghiệm lại có phản ứng dương tính).
a) Vẽ sơ đồ hình cây biểu thị tình huống trên.
b) Khi một người xét nghiệm có phản ứng dưởg tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?
Giả sử có một loại bệnh mà tỉ lệ người mắc bệnh là \(0,1\% \). Giả sử có một loại xét nghiệm, mà ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính, nhưng tỉ lệ phản ứng dương tính giả là \(5\% \) (tức là trong số những người không bị bệnh có \(5\% \) số người xét nghiệm lại có phản ứng dương tính).
a) Vẽ sơ đồ hình cây biểu thị tình huống trên.
b) Khi một người xét nghiệm có phản ứng dưởg tính thì khả năng mắc bệnh của người đó là bao nhiêu phần trăm (làm tròn kết quả đến hàng phần trăm)?
Quảng cáo
Trả lời:

a) Xét hai biến cố: \(K\) : "Người được chọn ra không mắc bệnh";
\(D\) : "Người được chọn ra có phản ứng dương tính".
Do tỉ lệ người mắc bệnh là \(0,1\% = 0,001\) nên \({\rm{P}}(K) = 1 - 0,001 = 0,999\).
Trong số những người không mắc bệnh có \(5\% \) số người có phản ứng dương tính nên \({\rm{P}}(D\mid K) = 5\% = 0,05\). Vì ai mắc bệnh khi xét nghiệm cũng có phản ứng dương tính nên \({\rm{P}}(D\mid \bar K) = 1\).
Sơ đồ hình cây ở Hình 3 biểu thi tình huống đã cho.

b) Ta thấy: Khả năng mắc bệnh của một người xét nghiệm có phản ứng dương tính chính là \({\rm{P}}(\bar K\mid D)\). Áp dụng công thức Bayes, ta có:
\({\rm{P}}(\bar K\mid D) = \frac{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K)}}{{{\rm{P}}(\bar K) \cdot {\rm{P}}(D\mid \bar K) + {\rm{P}}(K) \cdot {\rm{P}}(D\mid K)}} = \frac{{0,001}}{{0,001 + 0,999 \cdot 0,05}} \approx 1,96\% .\)
Vậy xác suất mắc bệnh của một người xét nghiệm có phản ứng dương tính là \(1,96\% \).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét các biến cố:
M: "Con bò ở Hà Lan bị bệnh bò điên";
D: "Con bò ở Hà Lan có phản ứng dương tính với xét nghiệm A ".
Theo giả thiết, ta có: \({\rm{P}}(M) = 0,000013;{\rm{P}}(D\mid M) = 0,7;{\rm{P}}(D\mid \bar M) = 0,1\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}(D) = {\rm{P}}(M) \cdot {\rm{P}}(D\mid M) + {\rm{P}}(\bar M) \cdot {\rm{P}}(D\mid \bar M) = 0,000013 \cdot 0,7 + (1 - 0,000013) \cdot 0,1\)\( = 0,1000078.\)
Theo công thức Bayes, ta có: \(P(M\mid D) = \frac{{{\rm{P}}(M) \cdot {\rm{P}}(D\mid M)}}{{{\rm{P}}(D)}} = \frac{{0,000013 \cdot 0,7}}{{0,1000078}} = \frac{{91}}{{1000078}}.\)
Vậy xác suất để một con bò Hà Lan bị bệnh bò điên nếu nó phản ứng dương tính với xét nghiệm A là \(\frac{{91}}{{1000078}}\).
Lời giải
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.