Một động cơ điện có hai van bảo hiểm cùng hoạt động. Xác suất hoạt động tốt của van I là 0,9, của van II là 0,72. Xác suất hoạt động tốt của van I, biết van II hoạt động tốt, là 0,96. Giả sử van I hoạt động tốt, xác suất hoạt động tốt của van II là:
Quảng cáo
Trả lời:

Chọn B
Gọi A là biến cố “ Van I hoạt động tốt”
Vậy P(A) = 0,9
Gọi B là biến cố “ Van II hoạt động tốt”
Vậy P(B) = 0,72
Theo công thức Bayes ta có
\[P(A/B) = \frac{{P(B/A).P(A)}}{{P(B)}} \Leftrightarrow P(B/A) = \frac{{P(A/B).P(B)}}{{P(A)}} = \frac{{0,92.0,96}}{{0,9}} = 0,768\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn D
Gọi A là biến cố: “Học sinh tự học tiếng anh bằng hình thức học trực tuyến”
=> P(A) = 0,7; P(Ā) = 0,3.
B là biến cố: “học sinh giỏi tiếng anh bằng hình thức trực tuyến” => P(B) = 0,8.
C là biến cố: “học sinh giỏi tiếng anh không tự học bằng hình thức trực tuyến” => P(C) = 0,3.
D là biến cố: “học sinh giỏi tiếng anh”
ðP(D) = P(A).P(B) + P(Ā).P(C) = 0,7.0,8 + 0,3.0,3 = 0,65.
Câu 2
Lời giải
Chọn C
Gọi:- A là biến cố "Viên bi được lấy ra từ hộp thứ hai là bi đỏ";
- \(B\) là biến cố "Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ";
- \(\bar B\) là biến cố "Viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh".
Ta có: \(P(B) = \frac{5}{{10}} = \frac{1}{2};P(\bar B) = \frac{5}{{10}} = \frac{1}{2}\).
Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi đỏ thì sau khi chuyển, hộp thứ hai có 7 bi đỏ và 4 bi xanh. Do đó \(P(A\mid B) = \frac{7}{{11}}\).
Nếu viên bi được lấy ra từ hộp thứ nhất chuyển sang hộp thứ hai là bi xanh thì sau khi chuyển, hộp thứ hai có 6 bi đỏ và 5 bi xanh. Do đó \(P(A\mid \bar B) = \frac{6}{{11}}\).
Áp dụng công thức xác suất toàn phần, ta có:
\(P(A) = P(B) \cdot P(A\mid B) + P(\bar B) \cdot P(A\mid \bar B) = \frac{1}{2} \cdot \frac{7}{{11}} + \frac{1}{2} \cdot \frac{6}{{11}} = \frac{{13}}{{22}}.\)
Vậy xác suất để viên bi được lấy ra từ hộp thứ hai là bi đỏ bằng \(\frac{{13}}{{22}}\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.