Câu hỏi:

23/08/2025 38 Lưu

Một căn bệnh có 1% dân số mắc phải. Một phương pháp chuẩn đoán được phát triển có tỷ lệ chính xác là 99%. Với những người bị bệnh, phương pháp này sẽ đưa ra kết quả dương tính 99% số trường hợp. Với người không mắc bệnh, phương pháp này cũng chuẩn đoán đúng 99 trong 100 trường hợp. Nếu một người kiểm tra và kết quả là dương tính (bị bệnh), xác suất để người đó thực sự bị bệnh là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gọi \[A\] là biến cố “người đó mắc bệnh”

Gọi \[B\] là biến cố “kết quả kiểm tra người đó là dương tính (bị bệnh)”

Ta cần tính \[P\left( {A|B} \right)\]

Với \[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)}}\]

Ta có:

Xác suất để người đó mắc bệnh khi chưa kiểm tra:\[P\left( A \right) = 1\%  = 0,01\]

Do đó xác suất để người đó không mắc bệnh khi chưa kiểm tra: \[P\left( {\bar A} \right) = 1 - 0,01 = 0,99\]

Xác suất kết quả dương tính nếu người đó mắc bệnh là: \[P\left( {B|A} \right) = 99\%  = 0,99\]

Xác suất kết quả dương tính nếu người đó không mắc bệnh là: \[P\left( {B|\bar A} \right) = 1 - 0,99 = 0,01\]

\[P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\bar A} \right).P\left( {B|\bar A} \right)}} = \frac{{0,01.0,99}}{{0,01.0,99 + 0,99.0,01}} = 0,5\]

Xác suất kết để người đó mắc bệnh nếu kết quả kiểm tra người đó là dương tính là \[0,5\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn D

Gọi A là biến cố: “Học sinh tự học tiếng anh bằng hình thức học trực tuyến”

=> P(A) = 0,7; P(Ā) = 0,3.

B là biến cố: “học sinh giỏi tiếng anh bằng hình thức trực tuyến” => P(B) = 0,8.

C là biến cố: “học sinh giỏi tiếng anh không tự học bằng hình thức trực tuyến” => P(C) = 0,3.

D là biến cố: “học sinh giỏi tiếng anh”

ðP(D) = P(A).P(B) + P(Ā).P(C) = 0,7.0,8 + 0,3.0,3 = 0,65.

Câu 2

Lời giải

Chọn C

Công thức Bayes

\[P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,8.0,7}}{{0,65}} = \frac{{56}}{{65}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP