Trong một hộp có 10 quả bóng màu xanh và 12 quả bóng màu đỏ, các quả bóng có khối lượng và kích thước như nhau. Bạn Tuấn lấy ngẫu nhiên lần lượt 2 quả bóng, mỗi lần lấy 1 quả và không hoàn lại. Xét các biến cố:
\(A\) : "Lần thứ nhất lấy được quả bóng màu xanh";
\(B\) : "Lần thứ hai lấy được quả bóng màu xanh".
Trong một hộp có 10 quả bóng màu xanh và 12 quả bóng màu đỏ, các quả bóng có khối lượng và kích thước như nhau. Bạn Tuấn lấy ngẫu nhiên lần lượt 2 quả bóng, mỗi lần lấy 1 quả và không hoàn lại. Xét các biến cố:
\(A\) : "Lần thứ nhất lấy được quả bóng màu xanh";
\(B\) : "Lần thứ hai lấy được quả bóng màu xanh".
a)
Quảng cáo
Trả lời:

a) Chọn đúng
Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)
Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)
Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).
Câu hỏi cùng đoạn
Câu 2:
b)
Lời giải của GV VietJack
b) Chọn Sai
Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)
Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)
Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).
Câu 3:
c)
Lời giải của GV VietJack
c) Chọn Sai
Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)
Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)
Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).
Câu 4:
d)
Lời giải của GV VietJack
d) Chọn đúng
Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)
Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)
Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn Sai
Ta có:
\(\begin{array}{l}P\left( A \right) = 0,65;\,P\left( {\overline A } \right) = 0,35;\,P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,02 = 0,98;\\P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,03 = 0,97.\end{array}\)
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = 0,65.0,98 + 0,35.0,97 = 0,9765\).
Lời giải
a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\). Suy ra a sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.