Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61\)%, số linh kiện do cơ sở II sản xuất chiếm \(39\)%. Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là 93%, 82%. Kiểm tra ngẫu nhiên 1 linh kiện ở xưởng máy. Xét các biến cố:
\({A_1}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;
\({A_2}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;
\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.
Một xưởng máy sử dụng một loại linh kiện được sản xuất từ hai cơ sở I và II. Số linh kiện do cơ sở I sản xuất chiếm \(61\)%, số linh kiện do cơ sở II sản xuất chiếm \(39\)%. Tỉ lệ linh kiện đạt tiêu chuẩn của cơ sở I, cơ sở II lần lượt là 93%, 82%. Kiểm tra ngẫu nhiên 1 linh kiện ở xưởng máy. Xét các biến cố:
\({A_1}\): “Linh kiện được kiểm tra do cơ sở I sản xuất”;
\({A_2}\): “Linh kiện được kiểm tra do cơ sở II sản xuất”;
\(B\): “Linh kiện được kiểm tra đạt tiêu chuẩn”.
a)
Quảng cáo
Trả lời:

a) Do \({\rm{P}}\left( {{A_1}} \right) = 0,61\). Suy ra a sai.
Câu hỏi cùng đoạn
Câu 2:
b)
Lời giải của GV VietJack
b) \({\rm{P}}\left( {B\mid {A_2}} \right) = \frac{{{\rm{P}}\left( {B \cap {A_2}} \right)}}{{{\rm{P}}\left( {{A_2}} \right)}} = 0,82\)
Do đó b đúng
Câu 3:
c)
Lời giải của GV VietJack
c) Ta có: \({\rm{P}}\left( {{A_1}} \right) = 0,61;{\rm{P}}\left( {{A_2}} \right) = 0,39;{\rm{P}}\left( {B\mid {A_1}} \right) = 0,93;{\rm{P}}\left( {B\mid {A_2}} \right) = 0,82\).
Theo công thức xác suất toàn phần, ta có:
\({\rm{P}}\left( B \right) = {\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right) + {\rm{P}}\left( {{A_2}} \right){\rm{.P}}\left( {B\mid {A_2}} \right) = 0,61.0,93 + 0,39.0,82 = 0,8871\).
Vậy c đúng
Câu 4:
d)
Lời giải của GV VietJack
d) Theo công thức Bayes, ta có: \({\rm{P}}\left( {{A_1}\mid B} \right) = \frac{{{\rm{P}}\left( {{A_1}} \right){\rm{.P}}\left( {B\mid {A_1}} \right)}}{{{\rm{P}}\left( B \right)}} = \frac{{0,61 \cdot 0,93}}{{0,8871}} \approx 0,64\).
Vậy d sai
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Chọn đúng
Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)
Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)
Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).
Lời giải
a) Chọn Sai
Ta có:
\(\begin{array}{l}P\left( A \right) = 0,65;\,P\left( {\overline A } \right) = 0,35;\,P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,02 = 0,98;\\P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,03 = 0,97.\end{array}\)
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = 0,65.0,98 + 0,35.0,97 = 0,9765\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.