Câu hỏi:

23/08/2025 11 Lưu

Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.

c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \[\frac{3}{5}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

c)

Gọi \[A\]  là biến cố “viên bi được lấy ra có đánh số”

Gọi \[B\]  là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \[\bar B\]  là biến cố “viên bi được lấy ra có màu vàng”,

Lúc này ta đi tính \[P\left( A \right)\] theo công thức: \[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right)\]

Ta có:

\[P\left( B \right) = \frac{{50}}{{80}} = \frac{5}{8}\]

\[P\left( {\bar B} \right) = \frac{{30}}{{80}} = \frac{3}{8}\]

\[P\left( {A|B} \right) = 60\%  = \frac{3}{5}\]

\[P\left( {A|\bar B} \right) = 100\%  - 50\%  = \frac{1}{2}\]

Vậy \[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = \frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}\]

Chọn Sai

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

a) Chọn đúng

Ta có: \(P\left( A \right) = \frac{{10}}{{22}} = \frac{5}{{11}};\,P\left( {\overline A } \right) = 1 - \frac{5}{{11}} = \frac{6}{{11}}.\)

Nếu lần thứ nhất lấy được quả bóng màu xanh thì còn lại 21 quả bóng, trong đó có 9 quả bóng màu xanh, suy ra \(P\left( {B|A} \right) = \frac{9}{{21}} = \frac{3}{7}.\)

Nếu lần thứ nhất lấy được quả bóng màu đỏ thì còn lại 21 quả bóng, trong đó có 10 quả bóng màu xanh, suy ra \(P\left( {B|\overline A } \right) = \frac{{10}}{{21}}\).

Theo công thức xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = \frac{5}{{11}}.\frac{3}{7} + \frac{6}{{11}}.\frac{{10}}{{21}} = \frac{5}{{11}}\).

Câu 2

Lời giải

a) Chọn Sai

Ta có:

 \(\begin{array}{l}P\left( A \right) = 0,65;\,P\left( {\overline A } \right) = 0,35;\,P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,02 = 0,98;\\P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,03 = 0,97.\end{array}\)

Theo công thức xác suất toàn phần, ta có:

\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = 0,65.0,98 + 0,35.0,97 = 0,9765\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP