Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \[\frac{3}{5}\].
Một chiếc hộp có 80 viên bi, trong đó có 50 viên bi màu đỏ và 30 viên bi màu vàng; các viên bi có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% số viên bi màu vàng có đánh số, những viên bi còn lại không đánh số.
c) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \[\frac{3}{5}\].
Quảng cáo
Trả lời:

c)
Gọi \[A\] là biến cố “viên bi được lấy ra có đánh số”
Gọi \[B\] là biến cố “viên bi được lấy ra có màu đỏ”, suy ra \[\bar B\] là biến cố “viên bi được lấy ra có màu vàng”,
Lúc này ta đi tính \[P\left( A \right)\] theo công thức: \[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right)\]
Ta có:
\[P\left( B \right) = \frac{{50}}{{80}} = \frac{5}{8}\]
\[P\left( {\bar B} \right) = \frac{{30}}{{80}} = \frac{3}{8}\]
\[P\left( {A|B} \right) = 60\% = \frac{3}{5}\]
\[P\left( {A|\bar B} \right) = 100\% - 50\% = \frac{1}{2}\]
Vậy \[P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\bar B} \right).P\left( {A|\bar B} \right) = \frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}\]
Chọn Sai
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \({T_i}\) : "bệnh nhân điều trị bệnh \(i\) " với \(i \in \{ 1;\,2;\,3\} \)
\(K\) : "bệnh nhân được khỏi bệnh"
d) Xác suất để bệnh nhân trị khỏi bệnh A là
\(P\left( {{T_A}\mid K} \right) = \frac{{P\left( {{T_A}} \right) \cdot P\left( {K\mid {T_A}} \right)}}{{P(K)}} = \frac{{0,5 \cdot 0,7}}{{0,77}} = 45,45\% \)
Chọn đúng
Lời giải
a) Chọn Sai
Ta có:
\(\begin{array}{l}P\left( A \right) = 0,65;\,P\left( {\overline A } \right) = 0,35;\,P\left( {B|A} \right) = 1 - P\left( {\overline B |A} \right) = 1 - 0,02 = 0,98;\\P\left( {B|\overline A } \right) = 1 - P\left( {\overline B |\overline A } \right) = 1 - 0,03 = 0,97.\end{array}\)
Theo công thức xác suất toàn phần, ta có:
\(P\left( B \right) = P\left( A \right)P\left( {B|A} \right) + P\left( {\overline A } \right)P\left( {B|\overline A } \right) = 0,65.0,98 + 0,35.0,97 = 0,9765\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.