Câu hỏi:

23/08/2025 23 Lưu

Trong một đợt kiểm tra sức khoẻ, có một loại bệnh X mà tỉ lệ người mắc bệnh là 0,2% và một loại xét nghiệm Y mà ai mắc bệnh X khi xét nghiệm Y cũng có phản ứng dương tính. Tuy nhiên, có 6% những người không bị bệnh X lại có phản ứng dương tính với xét nghiệm Y. Chọn ngẫu nhiên 1 người trong đợt kiểm tra sức khoẻ đó. Giả sử người đó có phản ứng dương tính với xét nghiệm Y. Xác suất người đó bị mắc bệnh X là bao nhiêu (làm tròn kết quà đến hàng phần trăm)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

“Người được chọn mắc bệnh X”;

“Người được chọn có phản ứng dương tính với xét nghiệm Y”.

Theo giả thiết ta có: \(P\left( A \right) = 0.002{\kern 1pt} ;\quad P\left( {\overline A } \right) = 1 - 0.002 = 0.998\);

\[P\left( {A\left| B \right.} \right) = 1{\kern 1pt} ;\quad P\left( {\left. {B{\kern 1pt} } \right|\overline A } \right) = 0.06.\]

Theo công thức Bayes, ta có:

\[P\left( {A\left| B \right.} \right) = \frac{{P\left( A \right).P\left( {A\left| B \right.} \right)}}{{P\left( A \right).P\left( {A\left| B \right.} \right) + P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right)}} = \frac{{0,002.1}}{{0,002.1 + 0,998.0,06}} \approx 0,03\]

Vậy nếu người được chọn có phản ứng dương tính với xét nghiệm Y thì xác suất bị mắc bệnh X của người đó là khoảng 0,03.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\): "Lấy được 1 chính phẩm từ thùng I sang thùng II";

   \(B\): "Lây được 1 chính phẩm từ thùng II".

Khi đó, \(P\left( A \right) = \frac{5}{9};\,\,P\left( {\overline A } \right) = \frac{4}{9};\,\,P\left( {B|A} \right) = \frac{7}{{15}};\,\,P\left( {B|\overline A } \right) = \frac{6}{{15}} = \frac{2}{5}\).

Theo công thức xác suất toàn phần, xác suất của biến cố \(B\) là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{9}.\frac{7}{{15}} + \frac{4}{9}.\frac{2}{5} \approx 0,44\).

Lời giải

Xét các biến cố:

A: "Chọn được người không bị bệnh tiểu đường";

\(B\) : "Chọn được người cao tuổi là nam";

\(\bar B\) : "Chọn được người cao tuổi là nữ".

Từ giả thiết, ta có: \({\rm{P}}(B) = \frac{{260}}{{500}} = 0,52;{\rm{P}}(A\mid B) = 1 - 0,4 = 0,6\);

\({\rm{P}}(\bar B) = \frac{{240}}{{500}} = 0,48;{\rm{P}}(A\mid \bar B) = 1 - 0,55 = 0,45.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,52 \cdot 0,6 + 0,48 \cdot 0,45 = 0,528.{\rm{ }}\)

Vậy xác suất để chọn được một người không bị bệnh tiểu đường là 0,528 .