Câu hỏi:

23/08/2025 33 Lưu

Trong một ngày hội giao lưu học sinh, chỉ có 350 học sinh trường Hoà Bình và 450 học sinh trường Minh Phúc đứng ở hội trường. Trong các học sinh giao lưu, tỉ lệ học sinh trường Hoà Bình bị cận thị là 0,2 , còn tỉ lệ học sinh trường Minh Phúc bị cận thị là 0,3 . Các học sinh của hai trường đứng lẫn với nhau. Chọn ngẫu nhiên một học sinh. Xác suất chọn được học sinh bị cận thị là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

A: "Học sinh được chọn bị cận thị";

B: "Học sinh được chọn thuộc trường Hoà Bình".

Theo giả thiết, ta có:

\({\rm{P}}(B) = \frac{{350}}{{800}} = \frac{7}{{16}};{\rm{P}}(\bar B) = \frac{{450}}{{800}} = \frac{9}{{16}};{\rm{P}}(A\mid B) = 0,2;{\rm{P}}(A\mid \bar B) = 0,3.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B)\)\( = \frac{7}{{16}} \cdot 0,2 + \frac{9}{{16}} \cdot 0,3 = \frac{{41}}{{160}}.\)

Vậy xác suất chọn được học sinh bị cận thị là \(\frac{{41}}{{160}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét các biến cố: \(A\): "Lấy được 1 chính phẩm từ thùng I sang thùng II";

   \(B\): "Lây được 1 chính phẩm từ thùng II".

Khi đó, \(P\left( A \right) = \frac{5}{9};\,\,P\left( {\overline A } \right) = \frac{4}{9};\,\,P\left( {B|A} \right) = \frac{7}{{15}};\,\,P\left( {B|\overline A } \right) = \frac{6}{{15}} = \frac{2}{5}\).

Theo công thức xác suất toàn phần, xác suất của biến cố \(B\) là: \(P\left( B \right) = P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right) = \frac{5}{9}.\frac{7}{{15}} + \frac{4}{9}.\frac{2}{5} \approx 0,44\).

Lời giải

Xét các biến cố:

A: "Chọn được người không bị bệnh tiểu đường";

\(B\) : "Chọn được người cao tuổi là nam";

\(\bar B\) : "Chọn được người cao tuổi là nữ".

Từ giả thiết, ta có: \({\rm{P}}(B) = \frac{{260}}{{500}} = 0,52;{\rm{P}}(A\mid B) = 1 - 0,4 = 0,6\);

\({\rm{P}}(\bar B) = \frac{{240}}{{500}} = 0,48;{\rm{P}}(A\mid \bar B) = 1 - 0,55 = 0,45.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = 0,52 \cdot 0,6 + 0,48 \cdot 0,45 = 0,528.{\rm{ }}\)

Vậy xác suất để chọn được một người không bị bệnh tiểu đường là 0,528 .