Câu hỏi:

23/08/2025 12 Lưu

Trong một ngày hội giao lưu học sinh, chỉ có 350 học sinh trường Hoà Bình và 450 học sinh trường Minh Phúc đứng ở hội trường. Trong các học sinh giao lưu, tỉ lệ học sinh trường Hoà Bình bị cận thị là 0,2 , còn tỉ lệ học sinh trường Minh Phúc bị cận thị là 0,3 . Các học sinh của hai trường đứng lẫn với nhau. Chọn ngẫu nhiên một học sinh. Xác suất chọn được học sinh bị cận thị là bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét các biến cố:

A: "Học sinh được chọn bị cận thị";

B: "Học sinh được chọn thuộc trường Hoà Bình".

Theo giả thiết, ta có:

\({\rm{P}}(B) = \frac{{350}}{{800}} = \frac{7}{{16}};{\rm{P}}(\bar B) = \frac{{450}}{{800}} = \frac{9}{{16}};{\rm{P}}(A\mid B) = 0,2;{\rm{P}}(A\mid \bar B) = 0,3.{\rm{ }}\)

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B)\)\( = \frac{7}{{16}} \cdot 0,2 + \frac{9}{{16}} \cdot 0,3 = \frac{{41}}{{160}}.\)

Vậy xác suất chọn được học sinh bị cận thị là \(\frac{{41}}{{160}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Vì hộp thứ nhất có 3 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng nên khi lấy 4 quả bóng bàn ở hộp thứ nhất thì có hai khả năng: khả năng thứ nhất là lấy được 3 quả bóng bàn màu trắng và 1 quả bóng bàn màu vàng; khả năng thứ hai là lấy được 2 quả bóng bàn màu trắng và 2 quả bóng bàn màu vàng.

Xét các biến cố:

A: "Lấy được quả bóng bàn màu vàng từ hộp thứ hai";

\(B\) : "Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 1 quả bóng bàn màu vàng"; \(\bar B\) : "Lấy được 4 quả bóng bàn ở hộp thứ nhất, trong đó có 2 quả bóng bàn màu vàng".

- Xét khả năng thư nhất: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \({\rm{C}}_5^4\), có 1 cách lấy 3 quả bóng bàn màu trắng và 2 cách lấy 1 quả bóng bàn màu vàng, suy ra \({\rm{P}}(B) = \frac{{1 \cdot 2}}{{{\rm{C}}_5^4}} = \frac{2}{5}\). Vì khi đó hộp thứ hai có 9 quả bóng bàn màu trắng và 5 quả bóng bàn màu vàng nên \({\rm{P}}(A\mid B) = \frac{5}{{14}}\).

- Xét khả năng thú hai: Số cách lấy 4 quả bóng bàn từ hộp thứ nhất là \({\rm{C}}_5^4\), có \({\rm{C}}_3^2\) cách lấy 2 quả bóng bàn màu trắng và 1 cách lấy 2 quả bóng bàn màu vàng, suy ra \({\rm{P}}(\bar B) = \frac{{{\rm{C}}_3^2 \cdot 1}}{{{\rm{C}}_5^4}} = \frac{3}{5}\). Vì khi đó hộp thứ hai có 8 quả bóng bàn màu trắng và 6 quả bóng bàn màu vàng nên \({\rm{P}}(A\mid \bar B) = \frac{6}{{14}}\).

Theo công thức xác suất toàn phần, ta có:

\({\rm{P}}(A) = {\rm{P}}(B) \cdot {\rm{P}}(A\mid B) + {\rm{P}}(\bar B) \cdot {\rm{P}}(A\mid \bar B) = \frac{2}{5} \cdot \frac{5}{{14}} + \frac{3}{5} \cdot \frac{6}{{14}} = \frac{2}{5}.\)

Vậy xác suất để lấy được quả bóng bàn màu vàng từ hộp thứ hai là \(\frac{2}{5}\).

Lời giải

- Gọi \(A\) là sự kiện "sản phẩm được kiểm tra là loại một"; \({B_1},{B_2},{B_3}\) lần lượt là sự kiện "sản phẩm được kiểm tra do phân xưởng I, II và III sản xuất".

- Hệ \(\left\{ {{B_1},{B_2},{B_3}} \right\}\) tạo thành một hệ đầy đủ với \(P\left( {{B_1}} \right) = 0,2,P\left( {{B_2}} \right) = 0,5\) và \(P\left( {{B_3}} \right) = 0,3\).

- Áp dụng công thức xác suất đầy đủ với \(P\left( {A\mid {B_1}} \right) = 0,7,P\left( {A\mid {B_2}} \right) = 0,8\) và \(P\left( {A\mid {B_3}} \right) = 0,6\) ta nhận được

\(\begin{array}{l}P(A) = P\left( {{B_1}} \right)P\left( {A\mid {B_1}} \right) + P\left( {{B_2}} \right)P\left( {A\mid {B_2}} \right) + P\left( {{B_3}} \right)P\left( {A\mid {B_3}} \right)\\{\rm{         }} = 0,2 \times 0,7 + 0,5 \times 0,8 + 0,3 \times 0,6 = 0,72 = 72\% \end{array}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP